|
|
|
"""
|
|
|
|
This module contains utilities to work with satellite images
|
|
|
|
|
|
|
|
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
|
|
|
|
"""
|
|
|
|
|
|
|
|
# load modules
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import pdb
|
|
|
|
|
|
|
|
# other modules
|
|
|
|
from osgeo import gdal, osr
|
|
|
|
import geopandas as gpd
|
|
|
|
from shapely import geometry
|
|
|
|
import skimage.transform as transform
|
|
|
|
from astropy.convolution import convolve
|
|
|
|
|
|
|
|
###################################################################################################
|
|
|
|
# COORDINATES CONVERSION FUNCTIONS
|
|
|
|
###################################################################################################
|
|
|
|
|
|
|
|
def convert_pix2world(points, georef):
|
|
|
|
"""
|
|
|
|
Converts pixel coordinates (pixel row and column) to world projected
|
|
|
|
coordinates performing an affine transformation.
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
points: np.array or list of np.array
|
|
|
|
array with 2 columns (row first and column second)
|
|
|
|
georef: np.array
|
|
|
|
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
points_converted: np.array or list of np.array
|
|
|
|
converted coordinates, first columns with X and second column with Y
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# make affine transformation matrix
|
|
|
|
aff_mat = np.array([[georef[1], georef[2], georef[0]],
|
|
|
|
[georef[4], georef[5], georef[3]],
|
|
|
|
[0, 0, 1]])
|
|
|
|
# create affine transformation
|
|
|
|
tform = transform.AffineTransform(aff_mat)
|
|
|
|
|
|
|
|
# if list of arrays
|
|
|
|
if type(points) is list:
|
|
|
|
points_converted = []
|
|
|
|
# iterate over the list
|
|
|
|
for i, arr in enumerate(points):
|
|
|
|
tmp = arr[:,[1,0]]
|
|
|
|
points_converted.append(tform(tmp))
|
|
|
|
|
|
|
|
# if single array
|
|
|
|
elif type(points) is np.ndarray:
|
|
|
|
tmp = points[:,[1,0]]
|
|
|
|
points_converted = tform(tmp)
|
|
|
|
|
|
|
|
else:
|
|
|
|
raise Exception('invalid input type')
|
|
|
|
|
|
|
|
return points_converted
|
|
|
|
|
|
|
|
def convert_world2pix(points, georef):
|
|
|
|
"""
|
|
|
|
Converts world projected coordinates (X,Y) to image coordinates
|
|
|
|
(pixel row and column) performing an affine transformation.
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
points: np.array or list of np.array
|
|
|
|
array with 2 columns (X,Y)
|
|
|
|
georef: np.array
|
|
|
|
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
points_converted: np.array or list of np.array
|
|
|
|
converted coordinates (pixel row and column)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# make affine transformation matrix
|
|
|
|
aff_mat = np.array([[georef[1], georef[2], georef[0]],
|
|
|
|
[georef[4], georef[5], georef[3]],
|
|
|
|
[0, 0, 1]])
|
|
|
|
# create affine transformation
|
|
|
|
tform = transform.AffineTransform(aff_mat)
|
|
|
|
|
|
|
|
# if list of arrays
|
|
|
|
if type(points) is list:
|
|
|
|
points_converted = []
|
|
|
|
# iterate over the list
|
|
|
|
for i, arr in enumerate(points):
|
|
|
|
points_converted.append(tform.inverse(points))
|
|
|
|
|
|
|
|
# if single array
|
|
|
|
elif type(points) is np.ndarray:
|
|
|
|
points_converted = tform.inverse(points)
|
|
|
|
|
|
|
|
else:
|
|
|
|
print('invalid input type')
|
|
|
|
raise
|
|
|
|
|
|
|
|
return points_converted
|
|
|
|
|
|
|
|
|
|
|
|
def convert_epsg(points, epsg_in, epsg_out):
|
|
|
|
"""
|
|
|
|
Converts from one spatial reference to another using the epsg codes
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
points: np.array or list of np.ndarray
|
|
|
|
array with 2 columns (rows first and columns second)
|
|
|
|
epsg_in: int
|
|
|
|
epsg code of the spatial reference in which the input is
|
|
|
|
epsg_out: int
|
|
|
|
epsg code of the spatial reference in which the output will be
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
points_converted: np.array or list of np.array
|
|
|
|
converted coordinates from epsg_in to epsg_out
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# define input and output spatial references
|
|
|
|
inSpatialRef = osr.SpatialReference()
|
|
|
|
inSpatialRef.ImportFromEPSG(epsg_in)
|
|
|
|
outSpatialRef = osr.SpatialReference()
|
|
|
|
outSpatialRef.ImportFromEPSG(epsg_out)
|
|
|
|
# create a coordinates transform
|
|
|
|
coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef)
|
|
|
|
# if list of arrays
|
|
|
|
if type(points) is list:
|
|
|
|
points_converted = []
|
|
|
|
# iterate over the list
|
|
|
|
for i, arr in enumerate(points):
|
|
|
|
points_converted.append(np.array(coordTransform.TransformPoints(arr)))
|
|
|
|
# if single array
|
|
|
|
elif type(points) is np.ndarray:
|
|
|
|
points_converted = np.array(coordTransform.TransformPoints(points))
|
|
|
|
else:
|
|
|
|
raise Exception('invalid input type')
|
|
|
|
|
|
|
|
return points_converted
|
|
|
|
|
|
|
|
###################################################################################################
|
|
|
|
# IMAGE ANALYSIS FUNCTIONS
|
|
|
|
###################################################################################################
|
|
|
|
|
|
|
|
def nd_index(im1, im2, cloud_mask):
|
|
|
|
"""
|
|
|
|
Computes normalised difference index on 2 images (2D), given a cloud mask (2D).
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
im1: np.array
|
|
|
|
first image (2D) with which to calculate the ND index
|
|
|
|
im2: np.array
|
|
|
|
second image (2D) with which to calculate the ND index
|
|
|
|
cloud_mask: np.array
|
|
|
|
2D cloud mask with True where cloud pixels are
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
im_nd: np.array
|
|
|
|
Image (2D) containing the ND index
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# reshape the cloud mask
|
|
|
|
vec_mask = cloud_mask.reshape(im1.shape[0] * im1.shape[1])
|
|
|
|
# initialise with NaNs
|
|
|
|
vec_nd = np.ones(len(vec_mask)) * np.nan
|
|
|
|
# reshape the two images
|
|
|
|
vec1 = im1.reshape(im1.shape[0] * im1.shape[1])
|
|
|
|
vec2 = im2.reshape(im2.shape[0] * im2.shape[1])
|
|
|
|
# compute the normalised difference index
|
|
|
|
temp = np.divide(vec1[~vec_mask] - vec2[~vec_mask],
|
|
|
|
vec1[~vec_mask] + vec2[~vec_mask])
|
|
|
|
vec_nd[~vec_mask] = temp
|
|
|
|
# reshape into image
|
|
|
|
im_nd = vec_nd.reshape(im1.shape[0], im1.shape[1])
|
|
|
|
|
|
|
|
return im_nd
|
|
|
|
|
|
|
|
def image_std(image, radius):
|
|
|
|
"""
|
|
|
|
Calculates the standard deviation of an image, using a moving window of
|
|
|
|
specified radius. Uses astropy's convolution library'
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
image: np.array
|
|
|
|
2D array containing the pixel intensities of a single-band image
|
|
|
|
radius: int
|
|
|
|
radius defining the moving window used to calculate the standard deviation.
|
|
|
|
For example, radius = 1 will produce a 3x3 moving window.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
win_std: np.array
|
|
|
|
2D array containing the standard deviation of the image
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# convert to float
|
|
|
|
image = image.astype(float)
|
|
|
|
# first pad the image
|
|
|
|
image_padded = np.pad(image, radius, 'reflect')
|
|
|
|
# window size
|
|
|
|
win_rows, win_cols = radius*2 + 1, radius*2 + 1
|
|
|
|
# calculate std with uniform filters
|
|
|
|
win_mean = convolve(image_padded, np.ones((win_rows,win_cols)), boundary='extend',
|
|
|
|
normalize_kernel=True, nan_treatment='interpolate', preserve_nan=True)
|
|
|
|
win_sqr_mean = convolve(image_padded**2, np.ones((win_rows,win_cols)), boundary='extend',
|
|
|
|
normalize_kernel=True, nan_treatment='interpolate', preserve_nan=True)
|
|
|
|
win_var = win_sqr_mean - win_mean**2
|
|
|
|
win_std = np.sqrt(win_var)
|
|
|
|
# remove padding
|
|
|
|
win_std = win_std[radius:-radius, radius:-radius]
|
|
|
|
|
|
|
|
return win_std
|
|
|
|
|
|
|
|
def mask_raster(fn, mask):
|
|
|
|
"""
|
|
|
|
Masks a .tif raster using GDAL.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
fn: str
|
|
|
|
filepath + filename of the .tif raster
|
|
|
|
mask: np.array
|
|
|
|
array of boolean where True indicates the pixels that are to be masked
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
Overwrites the .tif file directly
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# open raster
|
|
|
|
raster = gdal.Open(fn, gdal.GA_Update)
|
|
|
|
# mask raster
|
|
|
|
for i in range(raster.RasterCount):
|
|
|
|
out_band = raster.GetRasterBand(i+1)
|
|
|
|
out_data = out_band.ReadAsArray()
|
|
|
|
out_band.SetNoDataValue(0)
|
|
|
|
no_data_value = out_band.GetNoDataValue()
|
|
|
|
out_data[mask] = no_data_value
|
|
|
|
out_band.WriteArray(out_data)
|
|
|
|
# close dataset and flush cache
|
|
|
|
raster = None
|
|
|
|
|
|
|
|
|
|
|
|
###################################################################################################
|
|
|
|
# UTILITIES
|
|
|
|
###################################################################################################
|
|
|
|
|
|
|
|
def get_filepath(inputs,satname):
|
|
|
|
"""
|
|
|
|
Create filepath to the different folders containing the satellite images.
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
inputs: dict with the following keys
|
|
|
|
'sitename': str
|
|
|
|
name of the site
|
|
|
|
'polygon': list
|
|
|
|
polygon containing the lon/lat coordinates to be extracted,
|
|
|
|
longitudes in the first column and latitudes in the second column,
|
|
|
|
there are 5 pairs of lat/lon with the fifth point equal to the first point:
|
|
|
|
```
|
|
|
|
polygon = [[[151.3, -33.7],[151.4, -33.7],[151.4, -33.8],[151.3, -33.8],
|
|
|
|
[151.3, -33.7]]]
|
|
|
|
```
|
|
|
|
'dates': list of str
|
|
|
|
list that contains 2 strings with the initial and final dates in
|
|
|
|
format 'yyyy-mm-dd':
|
|
|
|
```
|
|
|
|
dates = ['1987-01-01', '2018-01-01']
|
|
|
|
```
|
|
|
|
'sat_list': list of str
|
|
|
|
list that contains the names of the satellite missions to include:
|
|
|
|
```
|
|
|
|
sat_list = ['L5', 'L7', 'L8', 'S2']
|
|
|
|
```
|
|
|
|
'filepath_data': str
|
|
|
|
filepath to the directory where the images are downloaded
|
|
|
|
satname: str
|
|
|
|
short name of the satellite mission ('L5','L7','L8','S2')
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
filepath: str or list of str
|
|
|
|
contains the filepath(s) to the folder(s) containing the satellite images
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
sitename = inputs['sitename']
|
|
|
|
filepath_data = inputs['filepath']
|
|
|
|
# access the images
|
|
|
|
if satname == 'L5':
|
|
|
|
# access downloaded Landsat 5 images
|
|
|
|
filepath = os.path.join(filepath_data, sitename, satname, '30m')
|
|
|
|
elif satname == 'L7':
|
|
|
|
# access downloaded Landsat 7 images
|
|
|
|
filepath_pan = os.path.join(filepath_data, sitename, 'L7', 'pan')
|
|
|
|
filepath_ms = os.path.join(filepath_data, sitename, 'L7', 'ms')
|
|
|
|
filepath = [filepath_pan, filepath_ms]
|
|
|
|
elif satname == 'L8':
|
|
|
|
# access downloaded Landsat 8 images
|
|
|
|
filepath_pan = os.path.join(filepath_data, sitename, 'L8', 'pan')
|
|
|
|
filepath_ms = os.path.join(filepath_data, sitename, 'L8', 'ms')
|
|
|
|
filepath = [filepath_pan, filepath_ms]
|
|
|
|
elif satname == 'S2':
|
|
|
|
# access downloaded Sentinel 2 images
|
|
|
|
filepath10 = os.path.join(filepath_data, sitename, satname, '10m')
|
|
|
|
filepath20 = os.path.join(filepath_data, sitename, satname, '20m')
|
|
|
|
filepath60 = os.path.join(filepath_data, sitename, satname, '60m')
|
|
|
|
filepath = [filepath10, filepath20, filepath60]
|
|
|
|
|
|
|
|
return filepath
|
|
|
|
|
|
|
|
def get_filenames(filename, filepath, satname):
|
|
|
|
"""
|
|
|
|
Creates filepath + filename for all the bands belonging to the same image.
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
filename: str
|
|
|
|
name of the downloaded satellite image as found in the metadata
|
|
|
|
filepath: str or list of str
|
|
|
|
contains the filepath(s) to the folder(s) containing the satellite images
|
|
|
|
satname: str
|
|
|
|
short name of the satellite mission
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
fn: str or list of str
|
|
|
|
contains the filepath + filenames to access the satellite image
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
if satname == 'L5':
|
|
|
|
fn = os.path.join(filepath, filename)
|
|
|
|
if satname == 'L7' or satname == 'L8':
|
|
|
|
filename_ms = filename.replace('pan','ms')
|
|
|
|
fn = [os.path.join(filepath[0], filename),
|
|
|
|
os.path.join(filepath[1], filename_ms)]
|
|
|
|
if satname == 'S2':
|
|
|
|
filename20 = filename.replace('10m','20m')
|
|
|
|
filename60 = filename.replace('10m','60m')
|
|
|
|
fn = [os.path.join(filepath[0], filename),
|
|
|
|
os.path.join(filepath[1], filename20),
|
|
|
|
os.path.join(filepath[2], filename60)]
|
|
|
|
|
|
|
|
return fn
|
|
|
|
|
|
|
|
def merge_output(output):
|
|
|
|
"""
|
|
|
|
Function to merge the output dictionnary, which has one key per satellite mission
|
|
|
|
into a dictionnary containing all the shorelines and dates ordered chronologically.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
output: dict
|
|
|
|
contains the extracted shorelines and corresponding dates, organised by
|
|
|
|
satellite mission
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
output_all: dict
|
|
|
|
contains the extracted shorelines in a single list sorted by date
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# initialize output dict
|
|
|
|
output_all = dict([])
|
|
|
|
satnames = list(output.keys())
|
|
|
|
for key in output[satnames[0]].keys():
|
|
|
|
output_all[key] = []
|
|
|
|
# create extra key for the satellite name
|
|
|
|
output_all['satname'] = []
|
|
|
|
# fill the output dict
|
|
|
|
for satname in list(output.keys()):
|
|
|
|
for key in output[satnames[0]].keys():
|
|
|
|
output_all[key] = output_all[key] + output[satname][key]
|
|
|
|
output_all['satname'] = output_all['satname'] + [_ for _ in np.tile(satname,
|
|
|
|
len(output[satname]['dates']))]
|
|
|
|
# sort chronologically
|
|
|
|
idx_sorted = sorted(range(len(output_all['dates'])), key=output_all['dates'].__getitem__)
|
|
|
|
for key in output_all.keys():
|
|
|
|
output_all[key] = [output_all[key][i] for i in idx_sorted]
|
|
|
|
|
|
|
|
return output_all
|
|
|
|
|
|
|
|
###################################################################################################
|
|
|
|
# CONVERSIONS FROM DICT TO GEODATAFRAME AND READ/WRITE GEOJSON
|
|
|
|
###################################################################################################
|
|
|
|
|
|
|
|
def polygon_from_kml(fn):
|
|
|
|
"""
|
|
|
|
Extracts coordinates from a .kml file.
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
fn: str
|
|
|
|
filepath + filename of the kml file to be read
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
polygon: list
|
|
|
|
coordinates extracted from the .kml file
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# read .kml file
|
|
|
|
with open(fn) as kmlFile:
|
|
|
|
doc = kmlFile.read()
|
|
|
|
# parse to find coordinates field
|
|
|
|
str1 = '<coordinates>'
|
|
|
|
str2 = '</coordinates>'
|
|
|
|
subdoc = doc[doc.find(str1)+len(str1):doc.find(str2)]
|
|
|
|
coordlist = subdoc.split('\n')
|
|
|
|
# read coordinates
|
|
|
|
polygon = []
|
|
|
|
for i in range(1,len(coordlist)-1):
|
|
|
|
polygon.append([float(coordlist[i].split(',')[0]), float(coordlist[i].split(',')[1])])
|
|
|
|
|
|
|
|
return [polygon]
|
|
|
|
|
|
|
|
def transects_from_geojson(filename):
|
|
|
|
"""
|
|
|
|
Reads transect coordinates from a .geojson file.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
filename: str
|
|
|
|
contains the path and filename of the geojson file to be loaded
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
transects: dict
|
|
|
|
contains the X and Y coordinates of each transect
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
gdf = gpd.read_file(filename)
|
|
|
|
transects = dict([])
|
|
|
|
for i in gdf.index:
|
|
|
|
transects[gdf.loc[i,'name']] = np.array(gdf.loc[i,'geometry'].coords)
|
|
|
|
|
|
|
|
print('%d transects have been loaded' % len(transects.keys()))
|
|
|
|
|
|
|
|
return transects
|
|
|
|
|
|
|
|
def output_to_gdf(output):
|
|
|
|
"""
|
|
|
|
Saves the mapped shorelines as a gpd.GeoDataFrame
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
output: dict
|
|
|
|
contains the coordinates of the mapped shorelines + attributes
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
gdf_all: gpd.GeoDataFrame
|
|
|
|
contains the shorelines + attirbutes
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# loop through the mapped shorelines
|
|
|
|
counter = 0
|
|
|
|
for i in range(len(output['shorelines'])):
|
|
|
|
# skip if there shoreline is empty
|
|
|
|
if len(output['shorelines'][i]) == 0:
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
# save the geometry + attributes
|
|
|
|
geom = geometry.LineString(output['shorelines'][i])
|
|
|
|
gdf = gpd.GeoDataFrame(geometry=gpd.GeoSeries(geom))
|
|
|
|
gdf.index = [i]
|
|
|
|
gdf.loc[i,'date'] = output['dates'][i].strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
gdf.loc[i,'satname'] = output['satname'][i]
|
|
|
|
gdf.loc[i,'geoaccuracy'] = output['geoaccuracy'][i]
|
|
|
|
gdf.loc[i,'cloud_cover'] = output['cloud_cover'][i]
|
|
|
|
# store into geodataframe
|
|
|
|
if counter == 0:
|
|
|
|
gdf_all = gdf
|
|
|
|
else:
|
|
|
|
gdf_all = gdf_all.append(gdf)
|
|
|
|
counter = counter + 1
|
|
|
|
|
|
|
|
return gdf_all
|
|
|
|
|
|
|
|
def transects_to_gdf(transects):
|
|
|
|
"""
|
|
|
|
Saves the shore-normal transects as a gpd.GeoDataFrame
|
|
|
|
|
|
|
|
KV WRL 2018
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
-----------
|
|
|
|
transects: dict
|
|
|
|
contains the coordinates of the transects
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-----------
|
|
|
|
gdf_all: gpd.GeoDataFrame
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# loop through the mapped shorelines
|
|
|
|
for i,key in enumerate(list(transects.keys())):
|
|
|
|
# save the geometry + attributes
|
|
|
|
geom = geometry.LineString(transects[key])
|
|
|
|
gdf = gpd.GeoDataFrame(geometry=gpd.GeoSeries(geom))
|
|
|
|
gdf.index = [i]
|
|
|
|
gdf.loc[i,'name'] = key
|
|
|
|
# store into geodataframe
|
|
|
|
if i == 0:
|
|
|
|
gdf_all = gdf
|
|
|
|
else:
|
|
|
|
gdf_all = gdf_all.append(gdf)
|
|
|
|
|
|
|
|
return gdf_all
|