You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

516 lines
16 KiB
Python

"""This module contains utilities to work with satellite images'
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
"""
6 years ago
# load modules
import os
import numpy as np
6 years ago
import matplotlib.pyplot as plt
import pdb
# other modules
from osgeo import gdal, osr
import geopandas as gpd
from shapely import geometry
import skimage.transform as transform
6 years ago
from scipy.ndimage.filters import uniform_filter
###################################################################################################
# COORDINATES CONVERSION FUNCTIONS
###################################################################################################
def convert_pix2world(points, georef):
"""
Converts pixel coordinates (row,columns) to world projected coordinates
performing an affine transformation.
KV WRL 2018
Arguments:
-----------
points: np.array or list of np.array
array with 2 columns (rows first and columns second)
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
Returns: -----------
points_converted: np.array or list of np.array
converted coordinates, first columns with X and second column with Y
"""
# make affine transformation matrix
aff_mat = np.array([[georef[1], georef[2], georef[0]],
[georef[4], georef[5], georef[3]],
[0, 0, 1]])
# create affine transformation
tform = transform.AffineTransform(aff_mat)
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
tmp = arr[:,[1,0]]
points_converted.append(tform(tmp))
elif type(points) is np.ndarray:
tmp = points[:,[1,0]]
points_converted = tform(tmp)
else:
raise Exception('invalid input type')
return points_converted
def convert_world2pix(points, georef):
"""
Converts world projected coordinates (X,Y) to image coordinates (row,column)
performing an affine transformation.
KV WRL 2018
Arguments:
-----------
points: np.array or list of np.array
array with 2 columns (rows first and columns second)
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
Returns: -----------
points_converted: np.array or list of np.array
converted coordinates, first columns with row and second column with column
"""
# make affine transformation matrix
aff_mat = np.array([[georef[1], georef[2], georef[0]],
[georef[4], georef[5], georef[3]],
[0, 0, 1]])
# create affine transformation
tform = transform.AffineTransform(aff_mat)
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
points_converted.append(tform.inverse(points))
elif type(points) is np.ndarray:
points_converted = tform.inverse(points)
else:
print('invalid input type')
raise
return points_converted
def convert_epsg(points, epsg_in, epsg_out):
"""
Converts from one spatial reference to another using the epsg codes.
KV WRL 2018
Arguments:
-----------
points: np.array or list of np.ndarray
array with 2 columns (rows first and columns second)
epsg_in: int
epsg code of the spatial reference in which the input is
epsg_out: int
epsg code of the spatial reference in which the output will be
Returns: -----------
points_converted: np.array or list of np.array
converted coordinates
"""
# define input and output spatial references
inSpatialRef = osr.SpatialReference()
inSpatialRef.ImportFromEPSG(epsg_in)
outSpatialRef = osr.SpatialReference()
outSpatialRef.ImportFromEPSG(epsg_out)
# create a coordinates transform
coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef)
# transform points
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
points_converted.append(np.array(coordTransform.TransformPoints(arr)))
elif type(points) is np.ndarray:
points_converted = np.array(coordTransform.TransformPoints(points))
else:
raise Exception('invalid input type')
return points_converted
###################################################################################################
# IMAGE ANALYSIS FUNCTIONS
###################################################################################################
6 years ago
def nd_index(im1, im2, cloud_mask):
"""
Computes normalised difference index on 2 images (2D), given a cloud mask (2D).
6 years ago
KV WRL 2018
Arguments:
-----------
im1, im2: np.array
Images (2D) with which to calculate the ND index
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
6 years ago
Returns: -----------
im_nd: np.array
Image (2D) containing the ND index
"""
# reshape the cloud mask
vec_mask = cloud_mask.reshape(im1.shape[0] * im1.shape[1])
# initialise with NaNs
vec_nd = np.ones(len(vec_mask)) * np.nan
# reshape the two images
vec1 = im1.reshape(im1.shape[0] * im1.shape[1])
vec2 = im2.reshape(im2.shape[0] * im2.shape[1])
# compute the normalised difference index
temp = np.divide(vec1[~vec_mask] - vec2[~vec_mask],
vec1[~vec_mask] + vec2[~vec_mask])
vec_nd[~vec_mask] = temp
# reshape into image
im_nd = vec_nd.reshape(im1.shape[0], im1.shape[1])
return im_nd
def image_std(image, radius):
"""
Calculates the standard deviation of an image, using a moving window of specified radius.
Arguments:
-----------
image: np.array
2D array containing the pixel intensities of a single-band image
radius: int
radius defining the moving window used to calculate the standard deviation. For example,
radius = 1 will produce a 3x3 moving window.
Returns:
-----------
win_std: np.array
2D array containing the standard deviation of the image
"""
# convert to float
image = image.astype(float)
# first pad the image
image_padded = np.pad(image, radius, 'reflect')
# window size
win_rows, win_cols = radius*2 + 1, radius*2 + 1
# calculate std
win_mean = uniform_filter(image_padded, (win_rows, win_cols))
win_sqr_mean = uniform_filter(image_padded**2, (win_rows, win_cols))
win_var = win_sqr_mean - win_mean**2
win_std = np.sqrt(win_var)
# remove padding
win_std = win_std[radius:-radius, radius:-radius]
return win_std
def mask_raster(fn, mask):
6 years ago
"""
Masks a .tif raster using GDAL.
6 years ago
Arguments:
-----------
fn: str
filepath + filename of the .tif raster
mask: np.array
array of boolean where True indicates the pixels that are to be masked
6 years ago
Returns:
-----------
overwrites the .tif file directly
6 years ago
"""
# open raster
raster = gdal.Open(fn, gdal.GA_Update)
# mask raster
for i in range(raster.RasterCount):
out_band = raster.GetRasterBand(i+1)
out_data = out_band.ReadAsArray()
out_band.SetNoDataValue(0)
no_data_value = out_band.GetNoDataValue()
out_data[mask] = no_data_value
out_band.WriteArray(out_data)
# close dataset and flush cache
raster = None
###################################################################################################
# UTILITIES
###################################################################################################
6 years ago
def get_filepath(inputs,satname):
"""
Create filepath to the different folders containing the satellite images.
KV WRL 2018
Arguments:
-----------
inputs: dict
dictionnary that contains the following fields:
'sitename': str
String containig the name of the site
'polygon': list
polygon containing the lon/lat coordinates to be extracted
longitudes in the first column and latitudes in the second column
'dates': list of str
list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd'
e.g. ['1987-01-01', '2018-01-01']
'sat_list': list of str
list that contains the names of the satellite missions to include
e.g. ['L5', 'L7', 'L8', 'S2']
satname: str
short name of the satellite mission
Returns:
-----------
filepath: str or list of str
contains the filepath(s) to the folder(s) containing the satellite images
"""
sitename = inputs['sitename']
filepath_data = inputs['filepath']
6 years ago
# access the images
if satname == 'L5':
# access downloaded Landsat 5 images
filepath = os.path.join(filepath_data, sitename, satname, '30m')
6 years ago
elif satname == 'L7':
# access downloaded Landsat 7 images
filepath_pan = os.path.join(filepath_data, sitename, 'L7', 'pan')
filepath_ms = os.path.join(filepath_data, sitename, 'L7', 'ms')
6 years ago
filepath = [filepath_pan, filepath_ms]
elif satname == 'L8':
# access downloaded Landsat 8 images
filepath_pan = os.path.join(filepath_data, sitename, 'L8', 'pan')
filepath_ms = os.path.join(filepath_data, sitename, 'L8', 'ms')
6 years ago
filepath = [filepath_pan, filepath_ms]
elif satname == 'S2':
# access downloaded Sentinel 2 images
filepath10 = os.path.join(filepath_data, sitename, satname, '10m')
filepath20 = os.path.join(filepath_data, sitename, satname, '20m')
filepath60 = os.path.join(filepath_data, sitename, satname, '60m')
6 years ago
filepath = [filepath10, filepath20, filepath60]
return filepath
def get_filenames(filename, filepath, satname):
6 years ago
"""
Creates filepath + filename for all the bands belonging to the same image.
KV WRL 2018
Arguments:
-----------
filename: str
name of the downloaded satellite image as found in the metadata
filepath: str or list of str
contains the filepath(s) to the folder(s) containing the satellite images
satname: str
short name of the satellite mission
Returns:
-----------
fn: str or list of str
contains the filepath + filenames to access the satellite image
"""
if satname == 'L5':
fn = os.path.join(filepath, filename)
if satname == 'L7' or satname == 'L8':
6 years ago
filename_ms = filename.replace('pan','ms')
fn = [os.path.join(filepath[0], filename),
os.path.join(filepath[1], filename_ms)]
if satname == 'S2':
6 years ago
filename20 = filename.replace('10m','20m')
filename60 = filename.replace('10m','60m')
fn = [os.path.join(filepath[0], filename),
os.path.join(filepath[1], filename20),
os.path.join(filepath[2], filename60)]
6 years ago
return fn
def merge_output(output):
6 years ago
"""
Function to merge the output dictionnary, which has one key per satellite mission into a
dictionnary containing all the shorelines and dates ordered chronologically.
6 years ago
Arguments:
-----------
output: dict
contains the extracted shorelines and corresponding dates, organised by satellite mission
6 years ago
Returns:
-----------
output_all: dict
contains the extracted shorelines in a single list sorted by date
"""
6 years ago
# initialize output dict
output_all = dict([])
satnames = list(output.keys())
for key in output[satnames[0]].keys():
output_all[key] = []
# create extra key for the satellite name
output_all['satname'] = []
# fill the output dict
for satname in list(output.keys()):
for key in output[satnames[0]].keys():
output_all[key] = output_all[key] + output[satname][key]
output_all['satname'] = output_all['satname'] + [_ for _ in np.tile(satname,
len(output[satname]['dates']))]
# sort chronologically
idx_sorted = sorted(range(len(output_all['dates'])), key=output_all['dates'].__getitem__)
for key in output_all.keys():
output_all[key] = [output_all[key][i] for i in idx_sorted]
6 years ago
return output_all
6 years ago
###################################################################################################
# CONVERSIONS FROM DICT TO GEODATAFRAME AND READ/WRITE GEOJSON
###################################################################################################
def polygon_from_kml(fn):
6 years ago
"""
Extracts coordinates from a .kml file.
6 years ago
KV WRL 2018
6 years ago
Arguments:
-----------
fn: str
filepath + filename of the kml file to be read
Returns: -----------
polygon: list
coordinates extracted from the .kml file
6 years ago
"""
6 years ago
# read .kml file
with open(fn) as kmlFile:
doc = kmlFile.read()
# parse to find coordinates field
str1 = '<coordinates>'
str2 = '</coordinates>'
subdoc = doc[doc.find(str1)+len(str1):doc.find(str2)]
coordlist = subdoc.split('\n')
# read coordinates
polygon = []
for i in range(1,len(coordlist)-1):
polygon.append([float(coordlist[i].split(',')[0]), float(coordlist[i].split(',')[1])])
return [polygon]
def transects_from_geojson(filename):
6 years ago
"""
Reads transect coordinates from a .geojson file.
6 years ago
Arguments:
-----------
filename: str
contains the path and filename of the geojson file to be loaded
6 years ago
Returns:
-----------
transects: dict
contains the X and Y coordinates of each transect.
6 years ago
"""
gdf = gpd.read_file(filename)
transects = dict([])
for i in gdf.index:
transects[gdf.loc[i,'name']] = np.array(gdf.loc[i,'geometry'].coords)
print('%d transects have been loaded' % len(transects.keys()))
return transects
def output_to_gdf(output):
"""
Saves the mapped shorelines as a gpd.GeoDataFrame
KV WRL 2018
Arguments:
-----------
output: dict
contains the coordinates of the mapped shorelines + attributes
Returns: -----------
gdf_all: gpd.GeoDataFrame
"""
# loop through the mapped shorelines
for i in range(len(output['shorelines'])):
# skip if there shoreline is empty
if len(output['shorelines'][i]) == 0:
6 years ago
continue
# save the geometry + attributes
geom = geometry.LineString(output['shorelines'][i])
gdf = gpd.GeoDataFrame(geometry=gpd.GeoSeries(geom))
gdf.index = [i]
gdf.loc[i,'date'] = output['dates'][i].strftime('%Y-%m-%d %H:%M:%S')
gdf.loc[i,'satname'] = output['satname'][i]
gdf.loc[i,'geoaccuracy'] = output['geoaccuracy'][i]
gdf.loc[i,'cloud_cover'] = output['cloud_cover'][i]
# store into geodataframe
if i == 0:
gdf_all = gdf
else:
gdf_all = gdf_all.append(gdf)
return gdf_all
def transects_to_gdf(transects):
"""
Saves the shore-normal transects as a gpd.GeoDataFrame
6 years ago
KV WRL 2018
6 years ago
Arguments:
-----------
transects: dict
contains the coordinates of the transects
Returns: -----------
gdf_all: gpd.GeoDataFrame
"""
# loop through the mapped shorelines
for i,key in enumerate(list(transects.keys())):
# save the geometry + attributes
geom = geometry.LineString(transects[key])
gdf = gpd.GeoDataFrame(geometry=gpd.GeoSeries(geom))
gdf.index = [i]
gdf.loc[i,'name'] = key
# store into geodataframe
if i == 0:
gdf_all = gdf
else:
gdf_all = gdf_all.append(gdf)
return gdf_all