|
|
|
@ -72,7 +72,7 @@ lat = -33.75
|
|
|
|
|
lon = 151.25
|
|
|
|
|
|
|
|
|
|
# Create temporary dataframe at specific location
|
|
|
|
|
df1 = df.loc[lat, lon]
|
|
|
|
|
df1 = df.loc[(lat, lon), :]
|
|
|
|
|
|
|
|
|
|
# Plot time series
|
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(6, 4))
|
|
|
|
@ -112,14 +112,11 @@ dates = df.index.get_level_values('time').unique()
|
|
|
|
|
fig, ax = plt.subplots(3, 4)
|
|
|
|
|
|
|
|
|
|
for i, date in enumerate(dates):
|
|
|
|
|
# Get temporary dataframe with only one date
|
|
|
|
|
df1 = df[df.index.get_level_values('time') == date]
|
|
|
|
|
|
|
|
|
|
# Remove date from multi-index
|
|
|
|
|
df1.index = df1.index.droplevel(-1)
|
|
|
|
|
# Get temporary dataframe with only one date ('slice(None)' is ':')
|
|
|
|
|
df1 = df.loc[(slice(None), slice(None), date), :]
|
|
|
|
|
|
|
|
|
|
# Split multi-index so that rows=latitude and columns=longitude
|
|
|
|
|
grid = df1.unstack()
|
|
|
|
|
grid = df1.unstack().unstack()
|
|
|
|
|
|
|
|
|
|
# Plot colour map for current month
|
|
|
|
|
a = ax.ravel()[i]
|
|
|
|
|