Compare commits
No commits in common. '18d7f448a483d474d90307a894503e00b542fabc' and 'bf916f5f25090f8b1d44c141e62b7ab57e56e5f7' have entirely different histories.
18d7f448a4
...
bf916f5f25
@ -1,80 +0,0 @@
|
||||
"""Fit probability distributions to IPCC sea level rise forecasts.
|
||||
|
||||
|
||||
Reads:
|
||||
'IPCC AR6.xlsx'
|
||||
|
||||
Writes:
|
||||
'png/*.png'
|
||||
|
||||
D. Howe
|
||||
d.howe@wrl.unsw.edu.au
|
||||
2022-05-12
|
||||
"""
|
||||
import os
|
||||
import re
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy import stats, optimize
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Read data
|
||||
df = pd.read_excel('IPCC AR6.xlsx', index_col=[0, 1, 2, 3, 4])
|
||||
df = df.sort_index()
|
||||
|
||||
# Use all 'medium' confidence scenarios for intermediate quantiles
|
||||
scenarios = ['ssp119', 'ssp126', 'ssp245', 'ssp370', 'ssp585']
|
||||
dff = df.loc[838, 'total', 'medium', scenarios].groupby('quantile').mean()
|
||||
|
||||
# Use ssp119/ssp585 for 5th and 95th quantiles
|
||||
dff.loc[5] = df.loc[838, 'total', 'medium', 'ssp119', 5]
|
||||
dff.loc[95] = df.loc[838, 'total', 'medium', 'ssp585', 95]
|
||||
dff = dff.T
|
||||
|
||||
dff.index.name = 'year'
|
||||
percentiles = dff.columns.values / 100
|
||||
values = dff.loc[2150].values
|
||||
|
||||
x_min = values.min() - 0.2
|
||||
x_max = values.max() + 0.2
|
||||
x = np.linspace(x_min, x_max, num=1000)
|
||||
|
||||
# Get statistical distributions
|
||||
distributions = [
|
||||
getattr(stats, d) for d in dir(stats)
|
||||
if isinstance(getattr(stats, d), stats.rv_continuous)
|
||||
]
|
||||
|
||||
for dist in distributions:
|
||||
|
||||
def cdf(x, loc, scale):
|
||||
"""Calculate cumulative density function"""
|
||||
return dist(loc=loc, scale=scale).cdf(x)
|
||||
|
||||
try:
|
||||
loc, scale = optimize.curve_fit(cdf, values, percentiles)[0]
|
||||
p = {'loc': loc, 'scale': scale}
|
||||
|
||||
except TypeError:
|
||||
continue
|
||||
|
||||
fig, ax = plt.subplots(1, 2, figsize=(6, 2))
|
||||
|
||||
ax[0].plot(x, 100 * dist.cdf(x, **p))
|
||||
ax[0].plot(values, 100 * percentiles, '.', c='#444444')
|
||||
ax[1].plot(x, 100 * dist.pdf(x, **p))
|
||||
|
||||
ax[0].axhline(y=100, c='#000000', lw=0.8, zorder=-1)
|
||||
ax[0].set_ylim(0, 101)
|
||||
ax[1].set_ylim(bottom=0)
|
||||
|
||||
ax[0].set_title(dist.name, x=-0.7, y=0.5, ha='left')
|
||||
|
||||
for a in ax.ravel():
|
||||
a.spines['right'].set_visible(False)
|
||||
a.spines['top'].set_visible(False)
|
||||
|
||||
ax[1].set_yticks([])
|
||||
|
||||
plt.savefig(f'png/{dist.name}.png', bbox_inches='tight', dpi=100)
|
||||
plt.close()
|
Loading…
Reference in New Issue