Add 'generate_slr.py'
parent
41ef2769bd
commit
faa3ef5d24
@ -0,0 +1,94 @@
|
|||||||
|
import os
|
||||||
|
import re
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from scipy import stats, optimize
|
||||||
|
|
||||||
|
WORKBOOK = '../inputs/20220505_Probabilistic_Erosion_Parameters_5th_JTC_REVIEWED_IPCC_SLR_OFFSET.xlsx' # noqa
|
||||||
|
SHEET = 'IPCC AR6 WRL FINAL'
|
||||||
|
VERSION = 'WRL V5 corrected to 2020' # First row of data
|
||||||
|
|
||||||
|
|
||||||
|
def get_cdf(x, loc, scale):
|
||||||
|
"""Calculate cumulative density function, using Cauchy distribution."""
|
||||||
|
return stats.cauchy(loc=loc, scale=scale).cdf(x)
|
||||||
|
|
||||||
|
|
||||||
|
def cauchy(n_runs, start_year, end_year):
|
||||||
|
"""
|
||||||
|
Use Monte Carlo simulation to generate sea level rise trajectories by
|
||||||
|
fitting IPCC data to a Cauchy distribution.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
n_runs (int): number of runs
|
||||||
|
start_year (int): first year of model
|
||||||
|
end_year (int): last year of model
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
the simulated sea level rise (m)
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Load IPCC SLR data
|
||||||
|
df = pd.read_excel(WORKBOOK, sheet_name=SHEET, index_col='psmsl_id')
|
||||||
|
idx = df.index.get_loc(VERSION) # First row containing values we want
|
||||||
|
df = df.iloc[idx:idx + 5].set_index('quantile')
|
||||||
|
df = df.drop(columns=['process', 'confidence', 'scenario']).T
|
||||||
|
df.index.name = 'year'
|
||||||
|
percentiles = df.columns.values / 100
|
||||||
|
|
||||||
|
for i, row in df.iterrows():
|
||||||
|
values = row.values
|
||||||
|
|
||||||
|
# Set valid range of probability distribution function
|
||||||
|
x_min = row[5] + (row[5] - row[50])
|
||||||
|
x_max = row[95] + (row[95] - row[50])
|
||||||
|
x = np.linspace(x_min, x_max, num=1000)
|
||||||
|
|
||||||
|
# Fit Cauchy distribution
|
||||||
|
loc, scale = optimize.curve_fit(get_cdf, values, percentiles)[0]
|
||||||
|
|
||||||
|
if x_min == x_max:
|
||||||
|
# Harcode values for start year (when everything is zero)
|
||||||
|
scale = 0.001
|
||||||
|
x_min = -0.001
|
||||||
|
x_max = 0.001
|
||||||
|
|
||||||
|
df.loc[i, 'loc'] = loc
|
||||||
|
df.loc[i, 'scale'] = scale
|
||||||
|
df.loc[i, 'min'] = x_min
|
||||||
|
df.loc[i, 'max'] = x_max
|
||||||
|
|
||||||
|
# Interpolate intermediate values
|
||||||
|
index = np.arange(df.index.min(), df.index.max() + 1)
|
||||||
|
df = df.reindex(index).interpolate(method='linear')
|
||||||
|
df = df.loc[start_year:end_year] # Trim dataframe to given range
|
||||||
|
|
||||||
|
# Prepare array for SLR values
|
||||||
|
slr = np.zeros([len(df), n_runs], dtype=float)
|
||||||
|
|
||||||
|
for i, (year, row) in enumerate(df.iterrows()):
|
||||||
|
# Get probability distribution for current year
|
||||||
|
dist = stats.cauchy(loc=row['loc'], scale=row['scale'])
|
||||||
|
|
||||||
|
# Generate random samples
|
||||||
|
for factor in range(2, 1000):
|
||||||
|
s_raw = dist.rvs(n_runs * factor)
|
||||||
|
|
||||||
|
# Take first samples within valid range
|
||||||
|
s = s_raw[(s_raw > row['min']) & (s_raw < row['max'])]
|
||||||
|
|
||||||
|
if len(s) > n_runs:
|
||||||
|
break # Success
|
||||||
|
else:
|
||||||
|
continue # We need more samples, so try larger factor
|
||||||
|
|
||||||
|
# Add the requried number of samples
|
||||||
|
slr[i] = s[:n_runs]
|
||||||
|
|
||||||
|
# Sort each row to make SLR trajectories smooth
|
||||||
|
slr = np.sort(slr, axis=1)
|
||||||
|
|
||||||
|
# Randomise run order (column-wise)
|
||||||
|
slr = np.random.permutation(slr.T).T
|
||||||
|
|
||||||
|
return slr
|
Loading…
Reference in New Issue