|
|
@ -475,17 +475,18 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
|
|
|
|
xp=profile_volume[valid_idx],
|
|
|
|
xp=profile_volume[valid_idx],
|
|
|
|
fp=profile_chainage[valid_idx])
|
|
|
|
fp=profile_chainage[valid_idx])
|
|
|
|
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(9,
|
|
|
|
|
|
|
|
len(output_years),
|
|
|
|
|
|
|
|
figsize=(16, 24),
|
|
|
|
|
|
|
|
sharey='row')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Check whether to save probabilistic diagnostics
|
|
|
|
# Check whether to save probabilistic diagnostics
|
|
|
|
|
|
|
|
output_diagnostics = False
|
|
|
|
for _, bp in pd.DataFrame(diagnostics).iterrows():
|
|
|
|
for _, bp in pd.DataFrame(diagnostics).iterrows():
|
|
|
|
if ((str(prof['block']) == str(bp['block']))
|
|
|
|
if ((str(prof['block']) == str(bp['block']))
|
|
|
|
and (prof['profile'] == bp['profile'])):
|
|
|
|
and (prof['profile'] == bp['profile'])):
|
|
|
|
output_diagnostics = True
|
|
|
|
output_diagnostics = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(9,
|
|
|
|
|
|
|
|
len(output_years),
|
|
|
|
|
|
|
|
figsize=(16, 24),
|
|
|
|
|
|
|
|
sharey='row')
|
|
|
|
|
|
|
|
|
|
|
|
# Loop through years
|
|
|
|
# Loop through years
|
|
|
|
pbar_year = tqdm(output_years, leave=False)
|
|
|
|
pbar_year = tqdm(output_years, leave=False)
|
|
|
|
for j, year in enumerate(pbar_year):
|
|
|
|
for j, year in enumerate(pbar_year):
|
|
|
@ -682,6 +683,7 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
|
|
|
|
'diagnostics',
|
|
|
|
'diagnostics',
|
|
|
|
'{} {} {}.csv'.format(beach_scenario, year,
|
|
|
|
'{} {} {}.csv'.format(beach_scenario, year,
|
|
|
|
profile_type))
|
|
|
|
profile_type))
|
|
|
|
|
|
|
|
dump_df = dump_df[::100] # Only output every 100th row
|
|
|
|
dump_df.to_csv(csv_name, float_format='%g')
|
|
|
|
dump_df.to_csv(csv_name, float_format='%g')
|
|
|
|
|
|
|
|
|
|
|
|
for i, c in enumerate(dump_df.columns[3:]):
|
|
|
|
for i, c in enumerate(dump_df.columns[3:]):
|
|
|
@ -714,6 +716,115 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
|
|
|
|
plt.savefig(figname, bbox_inches='tight', dpi=300)
|
|
|
|
plt.savefig(figname, bbox_inches='tight', dpi=300)
|
|
|
|
plt.close(fig)
|
|
|
|
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Plot time series figure
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(4,
|
|
|
|
|
|
|
|
2,
|
|
|
|
|
|
|
|
figsize=(12, 16),
|
|
|
|
|
|
|
|
sharey='row',
|
|
|
|
|
|
|
|
gridspec_kw={
|
|
|
|
|
|
|
|
'wspace': 0.05,
|
|
|
|
|
|
|
|
'width_ratios': [3, 1]
|
|
|
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax[0, 0].plot(years, slr[:, :100], c='#aaaaaa', lw=0.2)
|
|
|
|
|
|
|
|
ax[0, 0].plot(years,
|
|
|
|
|
|
|
|
slr[:, 1],
|
|
|
|
|
|
|
|
c='C0',
|
|
|
|
|
|
|
|
label='Sample simulation')
|
|
|
|
|
|
|
|
ax[0, 1].hist(slr[-1, :],
|
|
|
|
|
|
|
|
bins=100,
|
|
|
|
|
|
|
|
fc='#cccccc',
|
|
|
|
|
|
|
|
ec='#aaaaaa',
|
|
|
|
|
|
|
|
orientation='horizontal')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax[1, 0].plot(years, (slr * bf)[:, :100], c='#aaaaaa', lw=0.2)
|
|
|
|
|
|
|
|
ax[1, 0].plot(years, (slr * bf)[:, 1], c='C0')
|
|
|
|
|
|
|
|
ax[1, 1].hist((slr * bf)[-1, :],
|
|
|
|
|
|
|
|
bins=100,
|
|
|
|
|
|
|
|
fc='#cccccc',
|
|
|
|
|
|
|
|
ec='#aaaaaa',
|
|
|
|
|
|
|
|
orientation='horizontal')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax[2, 0].plot(years, ur[:, :100], c='#aaaaaa', lw=0.2)
|
|
|
|
|
|
|
|
ax[2, 0].plot(years, ur[:, 1], c='C0')
|
|
|
|
|
|
|
|
ax[2, 1].hist(ur[-1, :],
|
|
|
|
|
|
|
|
bins=100,
|
|
|
|
|
|
|
|
fc='#cccccc',
|
|
|
|
|
|
|
|
ec='#aaaaaa',
|
|
|
|
|
|
|
|
orientation='horizontal')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax[3, 0].plot(years, r[:, :100], c='#aaaaaa', lw=0.2)
|
|
|
|
|
|
|
|
ax[3, 0].plot(years, r[:, 1], c='C0', zorder=3)
|
|
|
|
|
|
|
|
ax[3, 1].hist(r[-1, :],
|
|
|
|
|
|
|
|
bins=100,
|
|
|
|
|
|
|
|
fc='#cccccc',
|
|
|
|
|
|
|
|
ec='#aaaaaa',
|
|
|
|
|
|
|
|
orientation='horizontal')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
baseline = r[:, 1]
|
|
|
|
|
|
|
|
sdd = storm_demand_dist[:, 1]
|
|
|
|
|
|
|
|
for i in range(len(slr)):
|
|
|
|
|
|
|
|
pe = [
|
|
|
|
|
|
|
|
matplotlib.patheffects.Stroke(linewidth=5,
|
|
|
|
|
|
|
|
foreground='#ffffff',
|
|
|
|
|
|
|
|
capstyle='butt'),
|
|
|
|
|
|
|
|
matplotlib.patheffects.Normal()
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax[3, 0].plot([years[i], years[i]],
|
|
|
|
|
|
|
|
[baseline[i], baseline[i] + sdd[i]],
|
|
|
|
|
|
|
|
c='C0',
|
|
|
|
|
|
|
|
path_effects=pe)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Maximum recession encountered
|
|
|
|
|
|
|
|
r_max = (baseline + sdd).max()
|
|
|
|
|
|
|
|
ax[3, 0].axhline(y=r_max, c='C3', linestyle=':')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i = len(years) - 1
|
|
|
|
|
|
|
|
for a in ax[:, 0]:
|
|
|
|
|
|
|
|
a.set_xlim(right=years[-1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Add line at zero
|
|
|
|
|
|
|
|
for a in ax[:-1, 0]:
|
|
|
|
|
|
|
|
a.spines['bottom'].set_position(('data', 0))
|
|
|
|
|
|
|
|
a.set_xticklabels([])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for a in ax[:, 1]:
|
|
|
|
|
|
|
|
a.xaxis.set_visible(False)
|
|
|
|
|
|
|
|
a.spines['bottom'].set_visible(False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax[3, 0].annotate(
|
|
|
|
|
|
|
|
'Most eroded beach state encountered in planning period',
|
|
|
|
|
|
|
|
(years[0], r_max),
|
|
|
|
|
|
|
|
xytext=(0, 20),
|
|
|
|
|
|
|
|
textcoords='offset pixels')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax[0, 0].legend()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax[0, 0].set_title((f'Probabilistic trajectories\n'
|
|
|
|
|
|
|
|
f'(first 100 out of {n_runs:,} runs)'))
|
|
|
|
|
|
|
|
ax[0, 1].set_title(
|
|
|
|
|
|
|
|
f'Probability\ndistribution\nin year {years[i]}')
|
|
|
|
|
|
|
|
ax[0, 0].set_ylabel('Sea level (m)', labelpad=10)
|
|
|
|
|
|
|
|
ax[1, 0].set_ylabel('Bruun recession (m)', labelpad=10)
|
|
|
|
|
|
|
|
ax[2, 0].set_ylabel('Underlying recession (m)', labelpad=10)
|
|
|
|
|
|
|
|
ax[3, 0].set_ylabel('Shoreline displacement (m)', labelpad=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax[3, 0].set_title(('Bruun recession'
|
|
|
|
|
|
|
|
'+ underlying recession'
|
|
|
|
|
|
|
|
'+ storm demand'),
|
|
|
|
|
|
|
|
y=0.9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for a in ax.ravel():
|
|
|
|
|
|
|
|
a.spines['top'].set_visible(False)
|
|
|
|
|
|
|
|
a.spines['right'].set_visible(False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
figname = os.path.join(
|
|
|
|
|
|
|
|
'diagnostics',
|
|
|
|
|
|
|
|
f'{beach_scenario} {profile_type} timeseries.png')
|
|
|
|
|
|
|
|
plt.savefig(figname, bbox_inches='tight', dpi=300)
|
|
|
|
|
|
|
|
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
def main():
|
|
|
|
|
|
|
|
|
|
|
|