|
|
@ -40,9 +40,6 @@ dff = df.loc[838, 'total', 'medium', 'ssp585'].T
|
|
|
|
dff.index.name = 'year'
|
|
|
|
dff.index.name = 'year'
|
|
|
|
percentiles = dff.columns.values / 100
|
|
|
|
percentiles = dff.columns.values / 100
|
|
|
|
|
|
|
|
|
|
|
|
# Make SLR relative to 2020 level (at the 50th percentile)
|
|
|
|
|
|
|
|
dff -= dff.loc[2020, 50]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i, row in dff.iterrows():
|
|
|
|
for i, row in dff.iterrows():
|
|
|
|
values = row.values
|
|
|
|
values = row.values
|
|
|
|
|
|
|
|
|
|
|
@ -102,6 +99,9 @@ for i, row in dff.iterrows():
|
|
|
|
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Make SLR relative to 2020 level (at the 50th percentile)
|
|
|
|
|
|
|
|
dff -= dff.loc[2020, 'mode']
|
|
|
|
|
|
|
|
|
|
|
|
# Save distribution parameters
|
|
|
|
# Save distribution parameters
|
|
|
|
dff[['min', 'mode', 'max']].to_csv('triang-values.csv', float_format='%0.3f')
|
|
|
|
dff[['min', 'mode', 'max']].to_csv('triang-values.csv', float_format='%0.3f')
|
|
|
|
|
|
|
|
|
|
|
|