|
|
|
@ -100,6 +100,10 @@ if PLOT:
|
|
|
|
|
for i, row in dff.iterrows():
|
|
|
|
|
j += 1
|
|
|
|
|
|
|
|
|
|
x_min = row[5] + (row[5] - row[50])
|
|
|
|
|
x_max = row[95] + (row[95] - row[50])
|
|
|
|
|
x = np.linspace(x_min, x_max, num=1000)
|
|
|
|
|
|
|
|
|
|
y = stats.cauchy(loc=row['loc'], scale=row['scale']).pdf(x)
|
|
|
|
|
ax.plot(x, y * row['scale'], c=c[j])
|
|
|
|
|
if j % 2 == 0:
|
|
|
|
@ -109,7 +113,7 @@ if PLOT:
|
|
|
|
|
clip_on=False,
|
|
|
|
|
rotation=90)
|
|
|
|
|
|
|
|
|
|
ax.set_ylim(top=0.35)
|
|
|
|
|
ax.set_ylim(bottom=0, top=0.35)
|
|
|
|
|
ax.set_yticks([])
|
|
|
|
|
ax.set_xlabel('SLR (m)', labelpad=10)
|
|
|
|
|
ax.set_ylabel('Normalised probability density (-)', labelpad=10)
|
|
|
|
@ -117,3 +121,5 @@ if PLOT:
|
|
|
|
|
ax.spines['top'].set_visible(False)
|
|
|
|
|
ax.spines['right'].set_visible(False)
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|