|
|
@ -38,13 +38,13 @@ df = pd.read_excel('IPCC AR6.xlsx', index_col=[0, 1, 2, 3, 4])
|
|
|
|
df = df.sort_index()
|
|
|
|
df = df.sort_index()
|
|
|
|
dff = df.loc[838, 'total', 'medium', 'ssp585'].T
|
|
|
|
dff = df.loc[838, 'total', 'medium', 'ssp585'].T
|
|
|
|
dff.index.name = 'year'
|
|
|
|
dff.index.name = 'year'
|
|
|
|
percentiles = dff.columns.to_numpy() / 100
|
|
|
|
percentiles = dff.columns.values / 100
|
|
|
|
|
|
|
|
|
|
|
|
# Make SLR relative to 2020 level (at the 50th percentile)
|
|
|
|
# Make SLR relative to 2020 level (at the 50th percentile)
|
|
|
|
dff -= dff.loc[2020, 50]
|
|
|
|
dff -= dff.loc[2020, 50]
|
|
|
|
|
|
|
|
|
|
|
|
for i, row in dff.iterrows():
|
|
|
|
for i, row in dff.iterrows():
|
|
|
|
values = row.to_numpy()
|
|
|
|
values = row.values
|
|
|
|
|
|
|
|
|
|
|
|
# Fit normal distribution
|
|
|
|
# Fit normal distribution
|
|
|
|
loc, scale = optimize.curve_fit(norm_cdf, values, percentiles)[0]
|
|
|
|
loc, scale = optimize.curve_fit(norm_cdf, values, percentiles)[0]
|
|
|
|