|
|
@ -329,7 +329,7 @@ def get_storm_demand_volume(ref_aep, ref_vol, n, mode='fit'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process(beach_name, beach_scenario, n_runs, start_year, end_year,
|
|
|
|
def process(beach_name, beach_scenario, n_runs, start_year, end_year,
|
|
|
|
output_years, output_ep, zsa_profile_file, zfc_profile_file,
|
|
|
|
output_years, output_ep, zsa_profile_file, zrfc_profile_file,
|
|
|
|
output_folder, figure_folder, sea_level_rise, bruun_factor,
|
|
|
|
output_folder, figure_folder, sea_level_rise, bruun_factor,
|
|
|
|
underlying_recession, storm_demand, plot_stats, omit_from_shp,
|
|
|
|
underlying_recession, storm_demand, plot_stats, omit_from_shp,
|
|
|
|
min_chainage, segment_gaps, insert_points, append_points):
|
|
|
|
min_chainage, segment_gaps, insert_points, append_points):
|
|
|
@ -345,7 +345,7 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
|
|
|
|
output_years (list): years to save profiles
|
|
|
|
output_years (list): years to save profiles
|
|
|
|
output_ep (list): EP values for saved profiles
|
|
|
|
output_ep (list): EP values for saved profiles
|
|
|
|
zsa_profile_file (str): path to storm demand vs chainge data (ZSA)
|
|
|
|
zsa_profile_file (str): path to storm demand vs chainge data (ZSA)
|
|
|
|
zfc_profile_file (str): path to storm demand vs chainge data (ZFC)
|
|
|
|
zrfc_profile_file (str): path to storm demand vs chainge data (ZRFC)
|
|
|
|
output_folder (str): where to save profiles
|
|
|
|
output_folder (str): where to save profiles
|
|
|
|
sea_level_rise (dict):
|
|
|
|
sea_level_rise (dict):
|
|
|
|
'year' (list): years
|
|
|
|
'year' (list): years
|
|
|
@ -420,14 +420,14 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
|
|
|
|
np.array(ref_vol)[sort_idx])
|
|
|
|
np.array(ref_vol)[sort_idx])
|
|
|
|
|
|
|
|
|
|
|
|
# Load profile data for current beach
|
|
|
|
# Load profile data for current beach
|
|
|
|
pbar_profiles = tqdm(['ZSA', 'ZFC'], leave=False)
|
|
|
|
pbar_profiles = tqdm(['ZSA', 'ZRFC'], leave=False)
|
|
|
|
for profile_type in pbar_profiles:
|
|
|
|
for profile_type in pbar_profiles:
|
|
|
|
pbar_profiles.set_description('{}'.format(profile_type))
|
|
|
|
pbar_profiles.set_description('{}'.format(profile_type))
|
|
|
|
|
|
|
|
|
|
|
|
if profile_type == 'ZSA':
|
|
|
|
if profile_type == 'ZSA':
|
|
|
|
df_in = pd.read_csv(zsa_profile_file)
|
|
|
|
df_in = pd.read_csv(zsa_profile_file)
|
|
|
|
if profile_type == 'ZFC':
|
|
|
|
if profile_type == 'ZRFC':
|
|
|
|
df_in = pd.read_csv(zfc_profile_file)
|
|
|
|
df_in = pd.read_csv(zrfc_profile_file)
|
|
|
|
|
|
|
|
|
|
|
|
col_names = [c for c in df_in.columns if c.isdigit()]
|
|
|
|
col_names = [c for c in df_in.columns if c.isdigit()]
|
|
|
|
|
|
|
|
|
|
|
|