You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

196 lines
6.6 KiB
Python

import wafo.spectrum.models as sm
import wafo.transform.models as wtm
import wafo.objects as wo
from wafo.spectrum import SpecData1D
import numpy as np
from numpy import NAN
from numpy.testing import assert_array_almost_equal, assert_array_equal
import unittest
def slow(f):
f.slow = True
return f
class TestSpectrumHs7(unittest.TestCase):
def setUp(self):
self.Sj = sm.Jonswap(Hm0=7.0, Tp=11)
self.S = self.Sj.tospecdata()
def test_tocovmatrix(self):
acfmat = self.S.tocov_matrix(nr=3, nt=256, dt=0.1)
vals = acfmat[:2, :]
true_vals = np.array([[3.06073383, 0.0000000, -1.67748256, 0.],
[3.05235423, -0.1674357, -1.66811444,
0.18693242]])
assert_array_almost_equal(vals, true_vals)
def test_tocovdata(self):
Nt = len(self.S.data) - 1
acf = self.S.tocovdata(nr=0, nt=Nt)
vals = acf.data[:5]
true_vals = np.array(
[3.06090339, 2.22658399, 0.45307391, -1.17495501, -2.05649042])
assert_array_almost_equal(vals, true_vals)
assert((np.abs(vals - true_vals) < 1e-6).all())
def test_to_t_pdf(self):
f = self.S.to_t_pdf(pdef='Tc', paramt=(0, 10, 51), speed=7, seed=100)
truth = [0.0, 0.014068786046738972, 0.027384724577108947, 0.039538002584522454,
0.050183061144017056, 0.05948762020247726, 0.0669017098497974,
0.07251637759775977, 0.07729759248201125, 0.08151306823047058]
assert_array_almost_equal(f.data[:10], truth, decimal=1e-3)
# estimated error bounds
vals = ['%2.4f' % val for val in f.err[:10]]
truevals = ['0.0000', '0.0003', '0.0003', '0.0004',
'0.0006', '0.0008', '0.0016', '0.0019', '0.0020', '0.0021']
for t, v in zip(truevals, vals):
assert(t == v)
@slow
def test_sim(self):
S = self.S
import scipy.stats as st
x2 = S.sim(20000, 20)
truth1 = [0, np.sqrt(S.moment(1)[0]), 0., 0.]
funs = [np.mean, np.std, st.skew, st.kurtosis]
for fun, trueval in zip(funs, truth1):
res = fun(x2[:, 1::], axis=0)
m = res.mean()
sa = res.std()
assert(np.abs(m - trueval) < sa)
@slow
def test_sim_nl(self):
S = self.S
import scipy.stats as st
x2, _x1 = S.sim_nl(ns=20000, cases=40)
truth1 = [0, np.sqrt(S.moment(1)[0][0])] + S.stats_nl(moments='sk')
truth1[-1] = truth1[-1] - 3
# truth1
# [0, 1.7495200310090633, 0.18673120577479801, 0.061988521262417606]
funs = [np.mean, np.std, st.skew, st.kurtosis]
for fun, trueval in zip(funs, truth1):
res = fun(x2.data, axis=0)
m = res.mean()
sa = res.std()
# trueval, m, sa
assert(np.abs(m - trueval) < 2 * sa)
def test_stats_nl(self):
S = self.S
me, va, sk, ku = S.stats_nl(moments='mvsk')
assert(me == 0.0)
assert_array_almost_equal(va, 3.0608203389019537)
assert_array_almost_equal(sk, 0.18673120577479801)
assert_array_almost_equal(ku, 3.0619885212624176)
def test_testgaussian(self):
Hs = self.Sj.Hm0
S0 = self.S
# ns =100; dt = .2
# x1 = S0.sim(ns, dt=dt)
S = S0.copy()
me, _va, sk, ku = S.stats_nl(moments='mvsk')
S.tr = wtm.TrHermite(mean=me, sigma=Hs / 4, skew=sk, kurt=ku, ysigma=Hs / 4)
ys = wo.mat2timeseries(S.sim(ns=2 ** 13))
g0, _gemp = ys.trdata()
t0 = g0.dist2gauss()
t1 = S0.testgaussian(ns=2 ** 13, test0=None, cases=50)
assert(sum(t1 > t0) <= 5)
class TestSpectrumHs5(unittest.TestCase):
def setUp(self):
self.Sj = sm.Jonswap(Hm0=5.0)
self.S = self.Sj.tospecdata()
def test_moment(self):
S = self.S
vals, txt = S.moment()
true_vals = [1.5614600345079888, 0.95567089481941048]
true_txt = ['m0', 'm0tt']
assert_array_almost_equal(vals, true_vals)
for tv, v in zip(true_txt, txt):
assert(tv == v)
def test_nyquist_freq(self):
S = self.S
assert_array_almost_equal(S.nyquist_freq(), 3.0)
def test_sampling_period(self):
S = self.S
assert_array_almost_equal(S.sampling_period(), 1.0471975511965976)
def test_normalize(self):
S = self.S
mom, txt = S.moment(2)
assert_array_almost_equal(mom,
[1.5614600345079888, 0.95567089481941048])
assert_array_equal(txt, ['m0', 'm0tt'])
vals, _txt = S.moment(2)
true_vals = [1.5614600345079888, 0.95567089481941048]
assert_array_almost_equal(vals, true_vals)
Sn = S.copy()
Sn.normalize()
# Now the moments should be one
new_vals, _txt = Sn.moment(2)
assert_array_almost_equal(new_vals, np.ones(2))
def test_characteristic(self):
S = self.S
ch, R, txt = S.characteristic(1)
assert_array_almost_equal(ch, 8.59007646)
assert_array_almost_equal(R, 0.03040216)
self.assert_(txt == ['Tm01'])
ch, R, txt = S.characteristic([1, 2, 3]) # fact a vector of integers
assert_array_almost_equal(ch, [8.59007646, 8.03139757, 5.62484314])
assert_array_almost_equal(R,
[[0.03040216, 0.02834263, NAN],
[0.02834263, 0.0274645, NAN],
[NAN, NAN, 0.01500249]])
assert_array_equal(txt, ['Tm01', 'Tm02', 'Tm24'])
ch, R, txt = S.characteristic('Ss') # fact a string
assert_array_almost_equal(ch, [0.04963112])
assert_array_almost_equal(R, [[2.63624782e-06]])
assert_array_equal(txt, ['Ss'])
# fact a list of strings
ch, R, txt = S.characteristic(['Hm0', 'Tm02'])
assert_array_almost_equal(ch,
[4.99833578, 8.03139757])
assert_array_almost_equal(R, [[0.05292989, 0.02511371],
[0.02511371, 0.0274645]])
assert_array_equal(txt, ['Hm0', 'Tm02'])
class TestSpectrumHs3(unittest.TestCase):
def test_bandwidth(self):
Sj = sm.Jonswap(Hm0=3, Tp=7)
w = np.linspace(0, 4, 256)
S = SpecData1D(Sj(w), w) # Make spectrum object from numerical values
vals = S.bandwidth([0, 1, 2, 3])
true_vals = [0.73062845, 0.34476034, 0.68277527, 2.90817052]
assert_array_almost_equal(vals, true_vals)
if __name__ == '__main__':
import nose
nose.run()