|
|
|
@ -1120,15 +1120,6 @@ class expon_gen(rv_continuous):
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return - (x - phat[0]) / logSF
|
|
|
|
|
elif ix == 0:
|
|
|
|
|
return x + phat[1] * logSF
|
|
|
|
|
else:
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
def _rvs(self):
|
|
|
|
|
return self._random_state.standard_exponential(self._size)
|
|
|
|
|
|
|
|
|
@ -1593,17 +1584,6 @@ class frechet_r_gen(rv_continuous):
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
|
if ix == 0:
|
|
|
|
|
phati = log(-logSF) / log((x - phat[1]) / phat[2])
|
|
|
|
|
elif ix == 1:
|
|
|
|
|
phati = x - phat[2] * (-logSF) ** (1. / phat[0])
|
|
|
|
|
elif ix == 2:
|
|
|
|
|
phati = (x - phat[1]) / (-logSF) ** (1. / phat[0])
|
|
|
|
|
else:
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
return phati
|
|
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
|
return c*pow(x, c-1)*exp(-pow(x, c))
|
|
|
|
|
|
|
|
|
@ -1762,33 +1742,6 @@ class genpareto_gen(rv_continuous):
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
|
# Reference
|
|
|
|
|
# Stuart Coles (2004)
|
|
|
|
|
# "An introduction to statistical modelling of extreme values".
|
|
|
|
|
# Springer series in statistics
|
|
|
|
|
c, loc, scale = phat
|
|
|
|
|
if ix == 2:
|
|
|
|
|
# Reorganizing w.r.t.scale, Eq. 4.13 and 4.14, pp 81 in
|
|
|
|
|
# Coles (2004) gives
|
|
|
|
|
# link = -(x-loc)*c/expm1(-c*logSF)
|
|
|
|
|
if c != 0.0:
|
|
|
|
|
phati = (x - loc) * c / expm1(-c * logSF)
|
|
|
|
|
else:
|
|
|
|
|
phati = -(x - loc) / logSF
|
|
|
|
|
elif ix == 1:
|
|
|
|
|
if c != 0:
|
|
|
|
|
phati = x + scale * expm1(c * logSF) / c
|
|
|
|
|
else:
|
|
|
|
|
phati = x + scale * logSF
|
|
|
|
|
elif ix == 0:
|
|
|
|
|
raise NotImplementedError(
|
|
|
|
|
'link(x,logSF,phat,i) where i=0 is not implemented!')
|
|
|
|
|
else:
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
return phati
|
|
|
|
|
|
|
|
|
|
def _argcheck(self, c):
|
|
|
|
|
c = asarray(c)
|
|
|
|
|
self.b = _lazywhere(c < 0, (c,),
|
|
|
|
@ -1832,57 +1785,6 @@ class genpareto_gen(rv_continuous):
|
|
|
|
|
scale = m * ((m / s) ** 2 + 1) / 2
|
|
|
|
|
return shape, loc, scale
|
|
|
|
|
|
|
|
|
|
def hessian_nnlf(self, theta, x, eps=None):
|
|
|
|
|
try:
|
|
|
|
|
loc = theta[-2]
|
|
|
|
|
scale = theta[-1]
|
|
|
|
|
args = tuple(theta[:-2])
|
|
|
|
|
except IndexError:
|
|
|
|
|
raise ValueError("Not enough input arguments.")
|
|
|
|
|
if not self._argcheck(*args) or scale <= 0:
|
|
|
|
|
return inf
|
|
|
|
|
x = asarray((x - loc) / scale)
|
|
|
|
|
cond0 = (x <= self.a) | (x >= self.b)
|
|
|
|
|
if any(cond0):
|
|
|
|
|
np = self.numargs + 2
|
|
|
|
|
return valarray((np, np), value=nan)
|
|
|
|
|
eps = _EPS
|
|
|
|
|
c = args[0]
|
|
|
|
|
n = len(x)
|
|
|
|
|
if abs(c) > eps:
|
|
|
|
|
cx = c * x
|
|
|
|
|
sumlog1pcx = sum(log1p(cx))
|
|
|
|
|
# LL = n*log(scale) + (1-1/k)*sumlog1mkxn
|
|
|
|
|
r = x / (1.0 + cx)
|
|
|
|
|
sumix = sum(1.0 / (1.0 + cx) ** 2.0)
|
|
|
|
|
|
|
|
|
|
sumr = sum(r)
|
|
|
|
|
sumr2 = sum(r ** 2.0)
|
|
|
|
|
H11 = -2 * sumlog1pcx / c ** 3 + 2 * \
|
|
|
|
|
sumr / c ** 2 + (1.0 + 1.0 / c) * sumr2
|
|
|
|
|
H22 = c * (c + 1) * sumix / scale ** 2.0
|
|
|
|
|
H33 = (n - 2 * (c + 1) * sumr +
|
|
|
|
|
c * (c + 1) * sumr2) / scale ** 2.0
|
|
|
|
|
H12 = -sum((1 - x) / ((1 + cx) ** 2.0)) / scale
|
|
|
|
|
H23 = -(c + 1) * sumix / scale ** 2.0
|
|
|
|
|
H13 = -(sumr - (c + 1) * sumr2) / scale
|
|
|
|
|
|
|
|
|
|
else: # c == 0
|
|
|
|
|
sumx = sum(x)
|
|
|
|
|
# LL = n*log(scale) + sumx;
|
|
|
|
|
|
|
|
|
|
sumx2 = sum(x ** 2.0)
|
|
|
|
|
H11 = -(2 / 3) * sum(x ** 3.0) + sumx2
|
|
|
|
|
H22 = 0.0
|
|
|
|
|
H12 = -(n - sum(x)) / scale
|
|
|
|
|
H23 = -n * 1.0 / scale ** 2.0
|
|
|
|
|
H33 = (n - 2 * sumx) / scale ** 2.0
|
|
|
|
|
H13 = -(sumx - sumx2) / scale
|
|
|
|
|
|
|
|
|
|
# Hessian matrix
|
|
|
|
|
H = [[H11, H12, H13], [H12, H22, H23], [H13, H23, H33]]
|
|
|
|
|
return asarray(H)
|
|
|
|
|
|
|
|
|
|
def __stats(self, c):
|
|
|
|
|
# return None,None,None,None
|
|
|
|
|
k = -c
|
|
|
|
@ -1950,22 +1852,6 @@ class genexpon_gen(rv_continuous):
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
|
_a, b, c, loc, scale = phat
|
|
|
|
|
xn = (x - loc) / scale
|
|
|
|
|
fact1 = (xn + expm1(-c * xn) / c)
|
|
|
|
|
if ix == 0:
|
|
|
|
|
phati = b * fact1 + logSF
|
|
|
|
|
elif ix == 1:
|
|
|
|
|
phati = (phat[0] - logSF) / fact1
|
|
|
|
|
elif ix in [2, 3, 4]:
|
|
|
|
|
raise NotImplementedError('Only implemented for index in [0,1]!')
|
|
|
|
|
else:
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
return phati
|
|
|
|
|
|
|
|
|
|
def _pdf(self, x, a, b, c):
|
|
|
|
|
return (a + b*(-special.expm1(-c*x))) * exp((-a-b)*x +
|
|
|
|
|
b*(-special.expm1(-c*x))/c)
|
|
|
|
@ -4248,15 +4134,6 @@ class rayleigh_gen(rv_continuous):
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return x - phat[0] / sqrt(-2.0 * logSF)
|
|
|
|
|
elif ix == 0:
|
|
|
|
|
return x - phat[1] * sqrt(-2.0 * logSF)
|
|
|
|
|
else:
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
def _rvs(self):
|
|
|
|
|
return chi.rvs(2, size=self._size, random_state=self._random_state)
|
|
|
|
|
|
|
|
|
@ -4314,18 +4191,6 @@ class truncrayleigh_gen(rv_continuous):
|
|
|
|
|
def _argcheck(self, c):
|
|
|
|
|
return (c >= 0)
|
|
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
|
c, loc, scale = phat
|
|
|
|
|
if ix == 2:
|
|
|
|
|
return x - loc / (sqrt(c * c - 2 * logSF) - c)
|
|
|
|
|
elif ix == 1:
|
|
|
|
|
return x - scale * (sqrt(c * c - 2 * logSF) - c)
|
|
|
|
|
elif ix == 0:
|
|
|
|
|
xn = (x - loc) / scale
|
|
|
|
|
return - 2 * logSF / xn - xn / 2.0
|
|
|
|
|
else:
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
def _fitstart(self, data, args=None):
|
|
|
|
|
if args is None:
|
|
|
|
|
args = (0.0,) * self.numargs
|
|
|
|
|