pep8 + added option for plotting confidence interval in plotesf

master
Per A Brodtkorb 8 years ago
parent deef6c4994
commit f69683428a

@ -1094,14 +1094,14 @@ def findrfc_astm(tp):
sig_rfc[:,2] Cycle type, half (=0.5) or full (=1.0)
"""
return numba_misc.findrfc_astm(tp)
y1 = atleast_1d(tp).ravel()
sig_rfc, cnr = clib.findrfc3_astm(y1)
# the sig_rfc was constructed too big in rainflow.rf3, so
# reduce the sig_rfc array as done originally by a matlab mex c function
n = len(sig_rfc)
# sig_rfc = sig_rfc.__getslice__(0, n - cnr[0])
# sig_rfc holds the actual rainflow counted cycles, not the indices
return sig_rfc[:n - cnr[0]]
# y1 = atleast_1d(tp).ravel()
# sig_rfc, cnr = clib.findrfc3_astm(y1)
# # the sig_rfc was constructed too big in rainflow.rf3, so
# # reduce the sig_rfc array as done originally by a matlab mex c function
# n = len(sig_rfc)
# # sig_rfc = sig_rfc.__getslice__(0, n - cnr[0])
# # sig_rfc holds the actual rainflow counted cycles, not the indices
# return sig_rfc[:n - cnr[0]]
def findrfc(tp, h=0.0, method='clib'):
@ -1404,18 +1404,20 @@ def mctp2tc(f_Mm, utc, param, f_mM=None):
if dim_m == 1:
tempm[0, 0] = (Bm / (1 - Am * Bm) * em)
else:
tempm = np.dot(Bm,
linalg.lstsq(Im-np.dot(Am, Bm), em)[0])
rh = Im - np.dot(Am, Bm)
tempm = np.dot(Bm, linalg.lstsq(rh, em)[0])
# end
# end
# end
if (j > ntc) and (i < ntc):
a = np.dot(np.dot(tempp.T, f_mM[i:ntc-1, n-ntc:-1:n-j+1]),
a = np.dot(np.dot(tempp.T,
f_mM[i:ntc - 1, n - ntc:-1:n - j + 1]),
tempm)
b = np.dot(np.dot(tempp.T, f_mM[i:ntc - 1, n - j:-1:1]),
ones((n - j, 1)))
c = np.dot(np.dot(ones((1, i-1)), f_mM[1:i-1, n-ntc:-1:n-j+1]),
c = np.dot(np.dot(ones((1, i - 1)),
f_mM[1:i - 1, n - ntc:-1:n - j + 1]),
tempm)
F[i, n - j + 1] = F[i, n - j + 1] + a + b + c
# end
@ -1428,7 +1430,8 @@ def mctp2tc(f_Mm, utc, param, f_mM=None):
# end
# end
if (j > ntc) and (i == ntc):
c = np.dot(np.dot(ones((1, i-1)), f_mM[1:i-1, n-ntc:-1:n-j+1]),
c = np.dot(np.dot(ones((1, i - 1)),
f_mM[1:i - 1, n - ntc:-1:n - j + 1]),
tempm)
F[i, n - j + 1] = F[i, n - j + 1] + c
for k in range(ntc, n):
@ -3109,7 +3112,8 @@ def test_docstrings():
# np.set_printoptions(precision=6)
import doctest
print('Testing docstrings in %s' % __file__)
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE|doctest.ELLIPSIS)
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE |
doctest.ELLIPSIS)
if __name__ == "__main__":

@ -1407,7 +1407,7 @@ class FitDistribution(rv_frozen):
except Exception:
pass
def plotesf(self, symb1='r-', symb2='b.', axis=None):
def plotesf(self, symb1='r-', symb2='b.', axis=None, plot_ci=False):
''' Plot Empirical and fitted Survival Function
The purpose of the plot is to graphically assess whether
@ -1422,7 +1422,7 @@ class FitDistribution(rv_frozen):
axis.semilogy(self.data, sf, symb2,
self.data, self.sf(self.data), symb1)
if True:
if plot_ci:
low = int(np.log10(1.0/n)-0.7) - 1
sf1 = np.logspace(low, -0.5, 7)[::-1]
ci1 = self.ci_sf(sf, alpha=0.05, i=2)

Loading…
Cancel
Save