|
|
|
@ -1,6 +1,6 @@
|
|
|
|
|
from __future__ import division
|
|
|
|
|
from wafo.misc import meshgrid, gravity, cart2polar, polar2cart
|
|
|
|
|
from wafo.objects import TimeSeries # mat2timeseries,
|
|
|
|
|
from wafo.objects import TimeSeries, mat2timeseries
|
|
|
|
|
import warnings
|
|
|
|
|
import os
|
|
|
|
|
import numpy as np
|
|
|
|
@ -23,6 +23,7 @@ from wafo.containers import PlotData, now
|
|
|
|
|
from wafo.misc import sub_dict_select, nextpow2, discretize, JITImport
|
|
|
|
|
# from wafo.graphutil import cltext
|
|
|
|
|
from wafo.kdetools import qlevels
|
|
|
|
|
from scipy.interpolate.interpolate import interp1d
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
from wafo.gaussian import Rind
|
|
|
|
@ -55,7 +56,7 @@ __all__ = ['SpecData1D', 'SpecData2D', 'plotspec']
|
|
|
|
|
|
|
|
|
|
def _set_seed(iseed):
|
|
|
|
|
'''Set seed of random generator'''
|
|
|
|
|
if iseed != None:
|
|
|
|
|
if iseed is not None:
|
|
|
|
|
try:
|
|
|
|
|
random.set_state(iseed)
|
|
|
|
|
except:
|
|
|
|
@ -146,7 +147,7 @@ def qtf(w, h=inf, g=9.81):
|
|
|
|
|
# k = find(w_1==w_2)
|
|
|
|
|
# h_d(k) = h_dii
|
|
|
|
|
|
|
|
|
|
#% The NaN's occur due to division by zero. => Set the isnans to zero
|
|
|
|
|
# The NaN's occur due to division by zero. => Set the isnans to zero
|
|
|
|
|
|
|
|
|
|
h_dii = where(isnan(h_dii), 0, h_dii)
|
|
|
|
|
h_d = where(isnan(h_d), 0, h_d)
|
|
|
|
@ -197,8 +198,8 @@ def plotspec(specdata, linetype='b-', flag=1):
|
|
|
|
|
#
|
|
|
|
|
# S = demospec('dir'); S2 = mkdspec(jonswap,spreading);
|
|
|
|
|
# plotspec(S,2), hold on
|
|
|
|
|
# plotspec(S,3,'g') % Same as previous fig. due to frequency independent spreading
|
|
|
|
|
# plotspec(S2,2,'r') % Not the same as previous figs. due to frequency dependent spreading
|
|
|
|
|
# plotspec(S,3,'g') # Same as previous fig. due to frequency independent spreading
|
|
|
|
|
# plotspec(S2,2,'r') # Not the same as previous figs. due to frequency dependent spreading
|
|
|
|
|
# plotspec(S2,3,'m')
|
|
|
|
|
# % transform from angular frequency and radians to frequency and degrees
|
|
|
|
|
# Sf = ttspec(S,'f','d'); clf
|
|
|
|
@ -1004,8 +1005,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
max_sim = 30
|
|
|
|
|
tolerance = 5e-4
|
|
|
|
|
|
|
|
|
|
L = 200 # %maximum lag size of the window function used in
|
|
|
|
|
#%spectral estimate
|
|
|
|
|
L = 200 # maximum lag size of the window function used in estimate
|
|
|
|
|
# ftype = self.freqtype #options are 'f' and 'w' and 'k'
|
|
|
|
|
# switch ftype
|
|
|
|
|
# case 'f',
|
|
|
|
@ -1015,8 +1015,8 @@ class SpecData1D(PlotData):
|
|
|
|
|
Hm0 = self.characteristic('Hm0')
|
|
|
|
|
Tm02 = self.characteristic('Tm02')
|
|
|
|
|
|
|
|
|
|
if not iseed is None:
|
|
|
|
|
_set_seed(iseed) # % set the the seed
|
|
|
|
|
if iseed is not None:
|
|
|
|
|
_set_seed(iseed) # set the the seed
|
|
|
|
|
|
|
|
|
|
n = len(self.data)
|
|
|
|
|
if ns is None:
|
|
|
|
@ -1050,25 +1050,27 @@ class SpecData1D(PlotData):
|
|
|
|
|
SL.data[indZero] = 0
|
|
|
|
|
|
|
|
|
|
maxS = max(S.data)
|
|
|
|
|
# Fs = 2*freq(end)+eps % sampling frequency
|
|
|
|
|
# Fs = 2*freq(end)+eps # sampling frequency
|
|
|
|
|
|
|
|
|
|
for ix in xrange(max_sim):
|
|
|
|
|
x2, x1 = self.sim_nl(ns=np, cases=cases, dt=None, iseed=iseed,
|
|
|
|
|
method=method,
|
|
|
|
|
fnlimit=fn_limit)
|
|
|
|
|
#%x2(:,2:end) = x2(:,2:end) -x1(:,2:end)
|
|
|
|
|
method=method, fnlimit=fn_limit,
|
|
|
|
|
output='timeseries')
|
|
|
|
|
x2.data -= x1.data # x2(:,2:end) = x2(:,2:end) -x1(:,2:end)
|
|
|
|
|
S2 = x2.tospecdata(L)
|
|
|
|
|
S1 = x1.tospecdata(L)
|
|
|
|
|
|
|
|
|
|
# TODO: Finish spec.to_linspec
|
|
|
|
|
# S2 = dat2spec(x2, L)
|
|
|
|
|
# S1 = dat2spec(x1, L)
|
|
|
|
|
# %[tf21,fi] = tfe(x2(:,2),x1(:,2),1024,Fs,[],512)
|
|
|
|
|
# %Hw11 = interp1q(fi,tf21.*conj(tf21),freq)
|
|
|
|
|
# if True:
|
|
|
|
|
# Hw1 = exp(interp1q(S2.args, log(abs(S1.data / S2.data)), freq))
|
|
|
|
|
# else:
|
|
|
|
|
if True:
|
|
|
|
|
Hw1 = exp(interp1d(log(abs(S1.data / S2.data)), S2.args)(freq))
|
|
|
|
|
else:
|
|
|
|
|
# Geometric mean
|
|
|
|
|
# Hw1 = exp(
|
|
|
|
|
# (interp1q(S2.args, log(abs(S1.data / S2.data)),
|
|
|
|
|
# freq) + log(Hw2)) / 2)
|
|
|
|
|
Hw1 = exp((interp1d(log(abs(S1.data / S2.data)), S2.args)(freq)
|
|
|
|
|
+ log(Hw2)) / 2)
|
|
|
|
|
# end
|
|
|
|
|
# Hw1 = (interp1q( S2.w,abs(S1.S./S2.S),freq)+Hw2)/2
|
|
|
|
|
# plot(freq, abs(Hw11-Hw1),'g')
|
|
|
|
@ -1085,7 +1087,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
# end
|
|
|
|
|
k = nonzero(SL.data < 0)[0]
|
|
|
|
|
if len(k): # Make sure that the current guess is larger than zero
|
|
|
|
|
#%k
|
|
|
|
|
# k
|
|
|
|
|
# Hw1(k)
|
|
|
|
|
Hw1[k] = min(S1.data[k] * 0.9, S.data[k])
|
|
|
|
|
SL.data[k] = max(Hw1[k] * S.data[k], eps)
|
|
|
|
@ -1120,7 +1122,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
|
|
|
|
|
#%Hw1(end)
|
|
|
|
|
#%maxS*1e-3
|
|
|
|
|
#%if Hw1(end)*S.>maxS*1e-3,
|
|
|
|
|
#%if Hw1[-1]*S.data>maxS*1e-3,
|
|
|
|
|
#% warning('The Nyquist frequency of the spectrum may be too low')
|
|
|
|
|
#%end
|
|
|
|
|
|
|
|
|
@ -2639,7 +2641,8 @@ class SpecData1D(PlotData):
|
|
|
|
|
# function [x2,x,svec,dvec,amp]=spec2nlsdat(spec,np,dt,iseed,method,
|
|
|
|
|
# truncationLimit)
|
|
|
|
|
def sim_nl(self, ns=None, cases=1, dt=None, iseed=None, method='random',
|
|
|
|
|
fnlimit=1.4142, reltol=1e-3, g=9.81, verbose=False):
|
|
|
|
|
fnlimit=1.4142, reltol=1e-3, g=9.81, verbose=False,
|
|
|
|
|
output='timeseries'):
|
|
|
|
|
"""
|
|
|
|
|
Simulates a Randomized 2nd order non-linear wave X(t)
|
|
|
|
|
|
|
|
|
@ -2894,7 +2897,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
(f_limit_lo, f_limit_up))
|
|
|
|
|
|
|
|
|
|
# if nargout>3,
|
|
|
|
|
# %compute the sum and frequency effects separately
|
|
|
|
|
# #compute the sum and frequency effects separately
|
|
|
|
|
# [svec, dvec] = disufq((amp.'),w,kw,min(h,10^30),g,nmin,nmax)
|
|
|
|
|
# svec = svec.'
|
|
|
|
|
# dvec = dvec.'
|
|
|
|
@ -2902,7 +2905,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
# x2s = fft(svec) % 2'nd order sum frequency component
|
|
|
|
|
# x2d = fft(dvec) % 2'nd order difference frequency component
|
|
|
|
|
##
|
|
|
|
|
# % 1'st order + 2'nd order component.
|
|
|
|
|
# # 1'st order + 2'nd order component.
|
|
|
|
|
# x2(:,2:end) =x(:,2:end)+ real(x2s(1:np,:))+real(x2d(1:np,:))
|
|
|
|
|
# else
|
|
|
|
|
if False:
|
|
|
|
@ -2926,7 +2929,10 @@ class SpecData1D(PlotData):
|
|
|
|
|
|
|
|
|
|
# 1'st order + 2'nd order component.
|
|
|
|
|
x2[:, 1::] = x[:, 1::] + x2o[0:ns, :].real
|
|
|
|
|
|
|
|
|
|
if output=='timeseries':
|
|
|
|
|
xx2 = mat2timeseries(x2[:, 1::], x2[:, 0].ravel())
|
|
|
|
|
xx = mat2timeseries(x[:, 1::], x[:, 0].ravel())
|
|
|
|
|
return xx2, xx
|
|
|
|
|
return x2, x
|
|
|
|
|
|
|
|
|
|
def stats_nl(self, h=None, moments='sk', method='approximate', g=9.81):
|
|
|
|
@ -4323,6 +4329,7 @@ def test_mm_pdf():
|
|
|
|
|
w = np.linspace(0, 4, 256)
|
|
|
|
|
S1 = Sj.tospecdata(w) # Make spectrum object from numerical values
|
|
|
|
|
S = sm.SpecData1D(Sj(w), w) # Alternatively do it manually
|
|
|
|
|
S0 = S.to_linspec()
|
|
|
|
|
mm = S.to_mm_pdf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -4332,6 +4339,6 @@ def test_docstrings():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
test_docstrings()
|
|
|
|
|
# test_mm_pdf()
|
|
|
|
|
#test_docstrings()
|
|
|
|
|
test_mm_pdf()
|
|
|
|
|
# main()
|
|
|
|
|