Added pychip.py
parent
fbadd0b3bb
commit
ef57cdf990
@ -0,0 +1,317 @@
|
||||
'''
|
||||
|
||||
pychip.py
|
||||
Michalski
|
||||
20090818
|
||||
|
||||
Piecewise cubic Hermite interpolation (monotonic...) in Python
|
||||
|
||||
References:
|
||||
|
||||
Wikipedia: Monotone cubic interpolation
|
||||
Cubic Hermite spline
|
||||
|
||||
A cubic Hermite spline is a third degree spline with each polynomial of the spline
|
||||
in Hermite form. The Hermite form consists of two control points and two control
|
||||
tangents for each polynomial. Each interpolation is performed on one sub-interval
|
||||
at a time (piece-wise). A monotone cubic interpolation is a variant of cubic
|
||||
interpolation that preserves monotonicity of the data to be interpolated (in other
|
||||
words, it controls overshoot). Monotonicity is preserved by linear interpolation
|
||||
but not by cubic interpolation.
|
||||
|
||||
Use:
|
||||
|
||||
There are two separate calls, the first call, pchip_slopes(), computes the slopes that
|
||||
the interpolator needs. If there are a large number of points to compute,
|
||||
it is more efficient to compute the slopes once, rather than for every point
|
||||
being evaluated. The second call, pchip_eval(), takes the slopes computed by
|
||||
pchip_slopes() along with X, Y, and a vector of desired "xnew"s and computes a vector
|
||||
of "ynew"s. If only a handful of points is needed, pchip() is a third function
|
||||
which combines a call to pchip_slopes() followed by pchip_eval().
|
||||
|
||||
'''
|
||||
import warnings
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
from interpolate import slopes, stineman_interp
|
||||
|
||||
#=========================================================
|
||||
def pchip(x, y, xnew):
|
||||
|
||||
# Compute the slopes used by the piecewise cubic Hermite interpolator
|
||||
m = pchip_slopes(x, y)
|
||||
|
||||
# Use these slopes (along with the Hermite basis function) to interpolate
|
||||
ynew = pchip_eval(x, y, m, xnew)
|
||||
|
||||
return ynew
|
||||
|
||||
#=========================================================
|
||||
def x_is_okay(x,xvec):
|
||||
# Make sure "x" and "xvec" satisfy the conditions for
|
||||
# running the pchip interpolator
|
||||
|
||||
n = len(x)
|
||||
m = len(xvec)
|
||||
|
||||
# Make sure "x" is in sorted order (brute force, but works...)
|
||||
xx = x.copy()
|
||||
xx.sort()
|
||||
total_matches = (xx == x).sum()
|
||||
if total_matches != n:
|
||||
warnings.warn( "x values weren't in sorted order --- aborting")
|
||||
return False
|
||||
|
||||
# Make sure 'x' doesn't have any repeated values
|
||||
delta = x[1:] - x[:-1]
|
||||
if (delta == 0.0).any():
|
||||
warnings.warn( "x values weren't monotonic--- aborting")
|
||||
return False
|
||||
|
||||
# Check for in-range xvec values (beyond upper edge)
|
||||
check = xvec > x[-1]
|
||||
if check.any():
|
||||
print "*" * 50
|
||||
print "x_is_okay()"
|
||||
print "Certain 'xvec' values are beyond the upper end of 'x'"
|
||||
print "x_max = ", x[-1]
|
||||
indices = np.compress(check, range(m))
|
||||
print "out-of-range xvec's = ", xvec[indices]
|
||||
print "out-of-range xvec indices = ", indices
|
||||
return False
|
||||
|
||||
# Second - check for in-range xvec values (beyond lower edge)
|
||||
check = xvec< x[0]
|
||||
if check.any():
|
||||
print "*" * 50
|
||||
print "x_is_okay()"
|
||||
print "Certain 'xvec' values are beyond the lower end of 'x'"
|
||||
print "x_min = ", x[0]
|
||||
indices = np.compress(check, range(m))
|
||||
print "out-of-range xvec's = ", xvec[indices]
|
||||
print "out-of-range xvec indices = ", indices
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
#=========================================================
|
||||
def pchip_eval(x, y, m, xvec):
|
||||
'''
|
||||
Evaluate the piecewise cubic Hermite interpolant with monoticity preserved
|
||||
|
||||
x = array containing the x-data
|
||||
y = array containing the y-data
|
||||
m = slopes at each (x,y) point [computed to preserve monotonicity]
|
||||
xnew = new "x" value where the interpolation is desired
|
||||
|
||||
x must be sorted low to high... (no repeats)
|
||||
y can have repeated values
|
||||
|
||||
This works with either a scalar or vector of "xvec"
|
||||
'''
|
||||
n = len(x)
|
||||
mm = len(xvec)
|
||||
|
||||
############################
|
||||
# Make sure there aren't problems with the input data
|
||||
############################
|
||||
if not x_is_okay(x, xvec):
|
||||
print "pchip_eval2() - ill formed 'x' vector!!!!!!!!!!!!!"
|
||||
|
||||
# Cause a hard crash...
|
||||
return #STOP_pchip_eval2
|
||||
|
||||
# Find the indices "k" such that x[k] < xvec < x[k+1]
|
||||
|
||||
# Create "copies" of "x" as rows in a mxn 2-dimensional vector
|
||||
xx = np.resize(x,(mm,n)).transpose()
|
||||
xxx = xx > xvec
|
||||
|
||||
# Compute column by column differences
|
||||
z = xxx[:-1,:] - xxx[1:,:]
|
||||
|
||||
# Collapse over rows...
|
||||
k = z.argmax(axis=0)
|
||||
|
||||
# Create the Hermite coefficients
|
||||
h = x[k+1] - x[k]
|
||||
t = (xvec - x[k]) / h[k]
|
||||
|
||||
# Hermite basis functions
|
||||
h00 = (2 * t**3) - (3 * t**2) + 1
|
||||
h10 = t**3 - (2 * t**2) + t
|
||||
h01 = (-2* t**3) + (3 * t**2)
|
||||
h11 = t**3 - t**2
|
||||
|
||||
# Compute the interpolated value of "y"
|
||||
ynew = h00*y[k] + h10*h*m[k] + h01*y[k+1] + h11*h*m[k+1]
|
||||
|
||||
return ynew
|
||||
|
||||
#=========================================================
|
||||
def pchip_slopes(x,y, kind='secant', tension=0, monotone=True):
|
||||
'''
|
||||
Return estimated slopes y'(x)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x, y : array-like
|
||||
array containing the x- and y-data, respectively.
|
||||
x must be sorted low to high... (no repeats) while
|
||||
y can have repeated values.
|
||||
kind : string
|
||||
defining method of estimation for yp. Valid options are:
|
||||
'secant' average secants
|
||||
yp = 0.5*((y[k+1]-y[k])/(x[k+1]-x[k]) + (y[k]-y[k-1])/(x[k]-x[k-1]))
|
||||
'Catmull-Rom' yp = (y[k+1]-y[k-1])/(x[k+1]-x[k-1])
|
||||
'Cardinal' yp = (1-tension) * (y[k+1]-y[k-1])/(x[k+1]-x[k-1])
|
||||
tension : real scalar between 0 and 1.
|
||||
tension parameter used in Cardinal method
|
||||
monotone : bool
|
||||
If True modifies yp to preserve monoticity
|
||||
|
||||
x input conditioning is assumed but not checked
|
||||
'''
|
||||
n = len(x)
|
||||
|
||||
# Compute the slopes of the secant lines between successive points
|
||||
delta = (y[1:] - y[:-1]) / (x[1:] - x[:-1])
|
||||
|
||||
# Initialize the tangents at every points as the average of the secants
|
||||
m = np.zeros(n, dtype='d')
|
||||
|
||||
# At the endpoints - use one-sided differences
|
||||
m[0] = delta[0]
|
||||
m[n-1] = delta[-1]
|
||||
method = kind.lower()
|
||||
if method.startswith('secant'):
|
||||
# In the middle - use the average of the secants
|
||||
m[1:-1] = (delta[:-1] + delta[1:]) / 2.0
|
||||
else: # Cardinal or Catmull-Rom method
|
||||
m[1:-1] = (y[2:] - y[:-2]) / (x[2:] - x[:-2])
|
||||
if method.startswith('cardinal'):
|
||||
m = (1-tension) * m
|
||||
|
||||
if monotone:
|
||||
# Special case: intervals where y[k] == y[k+1]
|
||||
|
||||
# Setting these slopes to zero guarantees the spline connecting
|
||||
# these points will be flat which preserves monotonicity
|
||||
indices_to_fix = np.compress((delta == 0.0), range(n))
|
||||
for ii in indices_to_fix:
|
||||
m[ii] = 0.0
|
||||
m[ii+1] = 0.0
|
||||
|
||||
alpha = m[:-1]/delta
|
||||
beta = m[1:]/delta
|
||||
dist = alpha**2 + beta**2
|
||||
tau = 3.0 / np.sqrt(dist)
|
||||
|
||||
# To prevent overshoot or undershoot, restrict the position vector
|
||||
# (alpha, beta) to a circle of radius 3. If (alpha**2 + beta**2)>9,
|
||||
# then set m[k] = tau[k]alpha[k]delta[k] and m[k+1] = tau[k]beta[b]delta[k]
|
||||
# where tau = 3/sqrt(alpha**2 + beta**2).
|
||||
|
||||
# Find the indices that need adjustment
|
||||
over = (dist > 9.0)
|
||||
indices_to_fix = np.compress(over, range(n))
|
||||
for ii in indices_to_fix:
|
||||
m[ii] = tau[ii] * alpha[ii] * delta[ii]
|
||||
m[ii+1] = tau[ii] * beta[ii] * delta[ii]
|
||||
|
||||
return m
|
||||
|
||||
#========================================================================
|
||||
def CubicHermiteSpline(x, y, xnew):
|
||||
'''
|
||||
Piecewise Cubic Hermite Interpolation using Catmull-Rom
|
||||
method for computing the slopes.
|
||||
'''
|
||||
# Non-montonic cubic Hermite spline interpolator using
|
||||
# Catmul-Rom method for computing slopes...
|
||||
m = pchip_slopes(x, y, kind='catmull', monotone=False)
|
||||
|
||||
# Use these slopes (along with the Hermite basis function) to interpolate
|
||||
ynew = pchip_eval(x, y, m, xnew)
|
||||
|
||||
return ynew
|
||||
|
||||
|
||||
|
||||
#==============================================================
|
||||
def main():
|
||||
############################################################
|
||||
# Sine wave test
|
||||
############################################################
|
||||
|
||||
# Create a example vector containing a sine wave.
|
||||
x = np.arange(30.0)/10.
|
||||
y = np.sin(x)
|
||||
|
||||
# Interpolate the data above to the grid defined by "xvec"
|
||||
xvec = np.arange(250.)/100.
|
||||
|
||||
# Initialize the interpolator slopes
|
||||
m = pchip_slopes(x,y)
|
||||
m1 = slopes(x, y)
|
||||
m2 = pchip_slopes(x,y,kind='catmul',monotone=False)
|
||||
# Call the monotonic piece-wise Hermite cubic interpolator
|
||||
yvec2 = pchip_eval(x, y, m, xvec)
|
||||
|
||||
plt.figure(1)
|
||||
plt.plot(x,y, 'ro')
|
||||
plt.title("pchip() Sin test code")
|
||||
|
||||
# Plot the interpolated points
|
||||
plt.plot(xvec, yvec2, 'b')
|
||||
|
||||
|
||||
|
||||
# Step function test...
|
||||
plt.figure(2)
|
||||
plt.title("pchip() step function test")
|
||||
|
||||
# Create a step function (will demonstrate monotonicity)
|
||||
x = np.arange(7.0) - 3.0
|
||||
y = np.array([-1.0, -1,-1,0,1,1,1])
|
||||
|
||||
# Interpolate using monotonic piecewise Hermite cubic spline
|
||||
xvec = np.arange(599.)/100. - 3.0
|
||||
|
||||
# Create the pchip slopes
|
||||
m = pchip_slopes(x,y)
|
||||
m1 = slopes(x, y)
|
||||
m2 = pchip_slopes(x,y,kind='catmul',monotone=False)
|
||||
# Interpolate...
|
||||
yvec = pchip_eval(x, y, m, xvec)
|
||||
|
||||
# Call the Scipy cubic spline interpolator
|
||||
from scipy.interpolate import interpolate
|
||||
function = interpolate.interp1d(x, y, kind='cubic')
|
||||
yvec2 = function(xvec)
|
||||
|
||||
# Non-montonic cubic Hermite spline interpolator using
|
||||
# Catmul-Rom method for computing slopes...
|
||||
yvec3 = CubicHermiteSpline(x,y, xvec)
|
||||
|
||||
|
||||
yvec4 = stineman_interp(xvec, x, y, m)
|
||||
|
||||
# Plot the results
|
||||
plt.plot(x, y, 'ro')
|
||||
plt.plot(xvec, yvec, 'b')
|
||||
plt.plot(xvec, yvec2, 'k')
|
||||
plt.plot(xvec, yvec3, 'g')
|
||||
plt.plot(xvec, yvec4, 'm')
|
||||
plt.xlabel("X")
|
||||
plt.ylabel("Y")
|
||||
plt.title("Comparing pypchip() vs. Scipy interp1d() vs. non-monotonic CHS")
|
||||
legends = ["Data", "pypchip()", "interp1d","CHS", 'SI']
|
||||
plt.legend(legends, loc="upper left")
|
||||
plt.ioff()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
###################################################################
|
||||
main()
|
Loading…
Reference in New Issue