|
|
|
@ -7,10 +7,10 @@ Author: Per A. Brodtkorb 2008
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
from __future__ import division
|
|
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
|
from wafo.plotbackend import plotbackend
|
|
|
|
|
from wafo.misc import ecross, findcross
|
|
|
|
|
#from scipy.misc.ppimport import ppimport
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numdifftools
|
|
|
|
|
from scipy import special
|
|
|
|
@ -19,7 +19,7 @@ from scipy import optimize
|
|
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
|
import numpy as np
|
|
|
|
|
from numpy import alltrue, arange, ravel, ones, sum, zeros, log, sqrt, exp
|
|
|
|
|
from numpy import alltrue, arange, ravel, sum, zeros, log, sqrt, exp
|
|
|
|
|
from numpy import (atleast_1d, any, asarray, nan, pi, reshape, repeat,
|
|
|
|
|
product, ndarray, isfinite)
|
|
|
|
|
from numpy import flatnonzero as nonzero
|
|
|
|
@ -134,84 +134,93 @@ class Profile(object):
|
|
|
|
|
''' Profile Log- likelihood or Product Spacing-function.
|
|
|
|
|
which can be used for constructing confidence interval for
|
|
|
|
|
either phat(i), probability or quantile.
|
|
|
|
|
Call
|
|
|
|
|
-----
|
|
|
|
|
Lp = Profile(fit_dist,**kwds)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
fit_dist : FitDistribution object with ML or MPS estimated distribution parameters.
|
|
|
|
|
|
|
|
|
|
fit_dist : FitDistribution object
|
|
|
|
|
with ML or MPS estimated distribution parameters.
|
|
|
|
|
**kwds : named arguments with keys
|
|
|
|
|
i - Integer defining which distribution parameter to
|
|
|
|
|
profile, i.e. which parameter to keep fixed
|
|
|
|
|
(default index to first non-fixed parameter)
|
|
|
|
|
pmin, pmax - Interval for either the parameter, phat(i), prb, or x,
|
|
|
|
|
used in the optimization of the profile function (default
|
|
|
|
|
is based on the 100*(1-alpha)% confidence interval
|
|
|
|
|
computed using the delta method.)
|
|
|
|
|
N - Max number of points used in Lp (default 100)
|
|
|
|
|
x - Quantile (return value)
|
|
|
|
|
logSF - log survival probability,i.e., SF = Prob(X>x;phat)
|
|
|
|
|
link - function connecting the quantile (x) and the
|
|
|
|
|
survival probability (SF) with the fixed distribution
|
|
|
|
|
parameter, i.e.: self.par[i] = link(x,logSF,self.par,i),
|
|
|
|
|
where logSF = log(Prob(X>x;phat)).
|
|
|
|
|
This means that if:
|
|
|
|
|
1) x is not None then x is profiled
|
|
|
|
|
2) logSF is not None then logSF is profiled
|
|
|
|
|
3) x and logSF both are None then self.par[i] is profiled (default)
|
|
|
|
|
alpha - confidence coefficent (default 0.05)
|
|
|
|
|
i : scalar integer
|
|
|
|
|
defining which distribution parameter to profile, i.e. which
|
|
|
|
|
parameter to keep fixed (default index to first non-fixed parameter)
|
|
|
|
|
pmin, pmax : real scalars
|
|
|
|
|
Interval for either the parameter, phat(i), prb, or x, used in the
|
|
|
|
|
optimization of the profile function (default is based on the
|
|
|
|
|
100*(1-alpha)% confidence interval computed using the delta method.)
|
|
|
|
|
N : scalar integer
|
|
|
|
|
Max number of points used in Lp (default 100)
|
|
|
|
|
x : real scalar
|
|
|
|
|
Quantile (return value) (default None)
|
|
|
|
|
logSF : real scalar
|
|
|
|
|
log survival probability,i.e., SF = Prob(X>x;phat) (default None)
|
|
|
|
|
link : function connecting the quantile (x) and the survival probability
|
|
|
|
|
(SF) with the fixed distribution parameter, i.e.:
|
|
|
|
|
self.par[i] = link(x,logSF,self.par,i), where logSF = log(Prob(X>x;phat)).
|
|
|
|
|
This means that if:
|
|
|
|
|
1) x is not None then x is profiled
|
|
|
|
|
2) logSF is not None then logSF is profiled
|
|
|
|
|
3) x and logSF both are None then self.par[i] is profiled (default)
|
|
|
|
|
alpha : real scalar
|
|
|
|
|
confidence coefficent (default 0.05)
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
Lp : Profile log-likelihood function with parameters phat given
|
|
|
|
|
the data, phat(i), probability (prb) and quantile (x) (if given), i.e.,
|
|
|
|
|
Lp = max(log(f(phat|data,phat(i)))),
|
|
|
|
|
or
|
|
|
|
|
Lp = max(log(f(phat|data,phat(i),x,prb)))
|
|
|
|
|
the data, phat(i), probability (prb) and quantile (x) (if given), i.e.,
|
|
|
|
|
Lp = max(log(f(phat|data,phat(i)))),
|
|
|
|
|
or
|
|
|
|
|
Lp = max(log(f(phat|data,phat(i),x,prb)))
|
|
|
|
|
|
|
|
|
|
Member methods
|
|
|
|
|
plot()
|
|
|
|
|
get_CI()
|
|
|
|
|
-------------
|
|
|
|
|
plot() : Plot profile function with 100(1-alpha)% confidence interval
|
|
|
|
|
get_bounds() : Return 100(1-alpha)% confidence interval
|
|
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
|
fit_dist - fitted data object.
|
|
|
|
|
data - profile function values
|
|
|
|
|
args - profile function arguments
|
|
|
|
|
alpha - confidence coefficient
|
|
|
|
|
Lmax - Maximum value of profile function
|
|
|
|
|
alpha_cross_level -
|
|
|
|
|
----------------
|
|
|
|
|
fit_dist : FitDistribution data object.
|
|
|
|
|
data : profile function values
|
|
|
|
|
args : profile function arguments
|
|
|
|
|
alpha : confidence coefficient
|
|
|
|
|
Lmax : Maximum value of profile function
|
|
|
|
|
alpha_cross_level :
|
|
|
|
|
|
|
|
|
|
PROFILE is a utility function for making inferences either on a particular
|
|
|
|
|
component of the vector phat or the quantile, x, or the probability, SF.
|
|
|
|
|
This is usually more accurate than using the delta method assuming
|
|
|
|
|
asymptotic normality of the ML estimator or the MPS estimator.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
--------
|
|
|
|
|
#MLE and better CI for phat.par[0]
|
|
|
|
|
# MLE
|
|
|
|
|
>>> import numpy as np
|
|
|
|
|
>>> R = weibull_min.rvs(1,size=100);
|
|
|
|
|
>>> phat = FitDistribution(ws.weibull_min, R,1,scale=1, floc=0.0)
|
|
|
|
|
|
|
|
|
|
>>> import wafo.stats as ws
|
|
|
|
|
>>> R = ws.weibull_min.rvs(1,size=100);
|
|
|
|
|
>>> phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
|
|
|
|
|
|
|
|
|
|
# Better CI for phat.par[i=0]
|
|
|
|
|
>>> Lp = Profile(phat, i=0)
|
|
|
|
|
>>> Lp.plot()
|
|
|
|
|
>>> Lp.get_CI(alpha=0.1)
|
|
|
|
|
>>> phat_ci = Lp.get_bounds(alpha=0.1)
|
|
|
|
|
|
|
|
|
|
>>> SF = 1./990
|
|
|
|
|
>>> x = phat.isf(SF)
|
|
|
|
|
|
|
|
|
|
# CI for x
|
|
|
|
|
>>> Lx = phat.profile(i=1,x=x,link=phat.dist.link)
|
|
|
|
|
>>> Lx = phat.profile(i=0, x=x, link=phat.dist.link)
|
|
|
|
|
>>> Lx.plot()
|
|
|
|
|
>>> Lx.get_CI(alpha=0.2)
|
|
|
|
|
>>> x_ci = Lx.get_bounds(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
# CI for logSF=log(SF)
|
|
|
|
|
>>> Lpr = phat.profile(i=1,logSF=log(SF),link = phat.dist.link)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>>> Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
|
|
|
|
|
>>> Lsf.plot()
|
|
|
|
|
>>> sf_ci = Lsf.get_bounds(alpha=0.2)
|
|
|
|
|
'''
|
|
|
|
|
def __init__(self, fit_dist, **kwds):
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
i0 = (1 - numpy.isfinite(fit_dist.par_fix)).argmax()
|
|
|
|
|
except:
|
|
|
|
|
i0 = 0
|
|
|
|
|
self.fit_dist = fit_dist
|
|
|
|
|
self.data = None
|
|
|
|
|
self.args = None
|
|
|
|
@ -220,7 +229,7 @@ class Profile(object):
|
|
|
|
|
self.ylabel = ''
|
|
|
|
|
self.i_fixed, self.N, self.alpha, self.pmin, self.pmax, self.x, self.logSF, self.link = map(kwds.get,
|
|
|
|
|
['i', 'N', 'alpha', 'pmin', 'pmax', 'x', 'logSF', 'link'],
|
|
|
|
|
[0, 100, 0.05, None, None, None, None, None])
|
|
|
|
|
[i0, 100, 0.05, None, None, None, None, None])
|
|
|
|
|
|
|
|
|
|
self.ylabel = '%g%s CI' % (100 * (1.0 - self.alpha), '%')
|
|
|
|
|
if fit_dist.method.startswith('ml'):
|
|
|
|
@ -252,14 +261,10 @@ class Profile(object):
|
|
|
|
|
self.alpha_cross_level = Lmax - self.alpha_Lrange
|
|
|
|
|
#lowLevel = self.alpha_cross_level - self.alpha_Lrange / 7.0
|
|
|
|
|
|
|
|
|
|
## Check that par are actually at the optimum
|
|
|
|
|
phatv = fit_dist.par.copy()
|
|
|
|
|
self._par = phatv.copy()
|
|
|
|
|
phatfree = phatv[self.i_free].copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Set up variable to profile and _local_link function
|
|
|
|
|
|
|
|
|
|
self.profile_x = not self.x == None
|
|
|
|
|
self.profile_logSF = not (self.logSF == None or self.profile_x)
|
|
|
|
|
self.profile_par = not (self.profile_x or self.profile_logSF)
|
|
|
|
@ -279,16 +284,29 @@ class Profile(object):
|
|
|
|
|
p_opt = self.logSF
|
|
|
|
|
self.x = fit_dist.isf(exp(p_opt))
|
|
|
|
|
self._local_link = lambda fix_par, par : self.link(self.x, fix_par, par, self.i_fixed)
|
|
|
|
|
self.xlabel = 'log(R)'
|
|
|
|
|
self.xlabel = 'log(SF)'
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError("You must supply a non-empty quantile (x) or probability (logSF) in order to profile it!")
|
|
|
|
|
|
|
|
|
|
self.xlabel = self.xlabel + ' (' + fit_dist.dist.name + ')'
|
|
|
|
|
|
|
|
|
|
## Check that par are actually at the optimum
|
|
|
|
|
|
|
|
|
|
phatfree = phatv[self.i_free].copy()
|
|
|
|
|
foundNewphat = False
|
|
|
|
|
mylogfun = self._nlogfun
|
|
|
|
|
if True:
|
|
|
|
|
phatfree = optimize.fmin(mylogfun, phatfree, args=(phatv[self.i_fixed],) , disp=0)
|
|
|
|
|
LLt = -mylogfun(phatfree,phatv[self.i_fixed])
|
|
|
|
|
if LLt>Lmax:
|
|
|
|
|
foundNewphat = True
|
|
|
|
|
warnings.warn('Something wrong with fit')
|
|
|
|
|
dL = Lmax-LLt
|
|
|
|
|
self.alpha_cross_level -= dL
|
|
|
|
|
self.Lmax = LLt
|
|
|
|
|
|
|
|
|
|
pvec = self._get_pvec(p_opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mylogfun = self._nlogfun
|
|
|
|
|
|
|
|
|
|
self.data = numpy.empty_like(pvec)
|
|
|
|
|
self.data[:] = nan
|
|
|
|
|
k1 = (pvec >= p_opt).argmax()
|
|
|
|
@ -362,6 +380,7 @@ class Profile(object):
|
|
|
|
|
else:
|
|
|
|
|
pvec = linspace(self.pmin, self.pmax, self.N)
|
|
|
|
|
return pvec
|
|
|
|
|
|
|
|
|
|
def _myinvfun(self, phatnotfixed):
|
|
|
|
|
mphat = self._par.copy()
|
|
|
|
|
mphat[self.i_notfixed] = phatnotfixed;
|
|
|
|
@ -382,39 +401,39 @@ class Profile(object):
|
|
|
|
|
probability (return period) or distribution parameter
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
par = self._par
|
|
|
|
|
par = self._par.copy()
|
|
|
|
|
par[self.i_free] = free_par
|
|
|
|
|
# _local_link: connects fixed quantile or probability with fixed distribution parameter
|
|
|
|
|
par[self.i_fixed] = self._local_link(fix_par, par)
|
|
|
|
|
return self.fit_dist.fitfun(par)
|
|
|
|
|
|
|
|
|
|
def get_CI(self, alpha=0.05):
|
|
|
|
|
def get_bounds(self, alpha=0.05):
|
|
|
|
|
'''Return confidence interval
|
|
|
|
|
'''
|
|
|
|
|
if alpha < self.alpha:
|
|
|
|
|
raise ValueError('Unable to return CI with alpha less than %g' % self.alpha)
|
|
|
|
|
|
|
|
|
|
cross_level = self.Lmax - 0.5 * chi2isf(alpha, 1) #_WAFODIST.chi2.isf(alpha, 1)
|
|
|
|
|
cross_level = self.Lmax - 0.5 * chi2isf(alpha, 1)
|
|
|
|
|
ind = findcross(self.data, cross_level)
|
|
|
|
|
N = len(ind)
|
|
|
|
|
if N == 0:
|
|
|
|
|
#Warning('upper bound for XXX is larger'
|
|
|
|
|
#Warning('lower bound for XXX is smaller'
|
|
|
|
|
warnings.warn('''Number of crossings is zero, i.e.,
|
|
|
|
|
upper and lower bound is not found!''')
|
|
|
|
|
CI = (self.pmin, self.pmax)
|
|
|
|
|
elif N == 1:
|
|
|
|
|
x0 = ecross(self.args, self.data, ind, cross_level)
|
|
|
|
|
isUpcrossing = self.data[ind] > self.data[ind + 1]
|
|
|
|
|
if isUpcrossing:
|
|
|
|
|
CI = (x0, self.pmax)
|
|
|
|
|
#Warning('upper bound for XXX is larger'
|
|
|
|
|
warnings.warn('Upper bound is larger')
|
|
|
|
|
else:
|
|
|
|
|
CI = (self.pmin, x0)
|
|
|
|
|
#Warning('lower bound for XXX is smaller'
|
|
|
|
|
warnings.warn('Lower bound is smaller')
|
|
|
|
|
|
|
|
|
|
elif N == 2:
|
|
|
|
|
CI = ecross(self.args, self.data, ind, cross_level)
|
|
|
|
|
else:
|
|
|
|
|
# Warning('Number of crossings too large!')
|
|
|
|
|
warnings.warn('Number of crossings too large! Something is wrong!')
|
|
|
|
|
CI = ecross(self.args, self.data, ind[[0, -1]], cross_level)
|
|
|
|
|
return CI
|
|
|
|
|
|
|
|
|
@ -449,7 +468,7 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
Data to use in calculating the ML or MPS estimators
|
|
|
|
|
args : optional
|
|
|
|
|
Starting values for any shape arguments (those not specified
|
|
|
|
|
will be determined by _fitstart(data))
|
|
|
|
|
will be determined by dist._fitstart(data))
|
|
|
|
|
kwds : loc, scale
|
|
|
|
|
Starting values for the location and scale parameters
|
|
|
|
|
Special keyword arguments are recognized as holding certain
|
|
|
|
@ -501,31 +520,33 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
>>> phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
|
|
|
|
|
|
|
|
|
|
#Plot various diagnostic plots to asses quality of fit.
|
|
|
|
|
>>> phat.plotfitsumry()
|
|
|
|
|
>>> phat.plotfitsummary()
|
|
|
|
|
|
|
|
|
|
#phat.par holds the estimated parameters
|
|
|
|
|
#phat.par_upper upper CI for parameters
|
|
|
|
|
#phat.par_lower lower CI for parameters
|
|
|
|
|
|
|
|
|
|
#Better CI for phat.par[0]
|
|
|
|
|
>>> Lp = Profile(phat,i=0)
|
|
|
|
|
>>> Lp = phat.profile(i=0)
|
|
|
|
|
>>> Lp.plot()
|
|
|
|
|
>>> Lp.get_CI(alpha=0.1)
|
|
|
|
|
>>> p_ci = Lp.get_bounds(alpha=0.1)
|
|
|
|
|
|
|
|
|
|
>>> SF = 1./990
|
|
|
|
|
>>> x = phat.isf(SF)
|
|
|
|
|
|
|
|
|
|
# CI for x
|
|
|
|
|
>>> Lx = phat.profile(i=0,x=x,link=phat.dist.link)
|
|
|
|
|
>>> Lx = Profile(phat, i=0,x=x,link=phat.dist.link)
|
|
|
|
|
>>> Lx.plot()
|
|
|
|
|
>>> Lx.get_CI(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
# CI for logSF=log(SF)
|
|
|
|
|
>>> Lpr = phat.profile(i=0,logSF=log(SF),link = phat.dist.link)
|
|
|
|
|
>>> x_ci = Lx.get_bounds(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
# CI for logSF=log(SF)
|
|
|
|
|
>>> Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
|
|
|
|
|
>>> Lsf.plot()
|
|
|
|
|
>>> sf_ci = Lsf.get_bounds(alpha=0.2)
|
|
|
|
|
'''
|
|
|
|
|
def __init__(self, dist, data, *args, **kwds):
|
|
|
|
|
extradoc = '''
|
|
|
|
|
plotfitsumry()
|
|
|
|
|
plotfitsummary()
|
|
|
|
|
Plot various diagnostic plots to asses quality of fit.
|
|
|
|
|
plotecdf()
|
|
|
|
|
Plot Empirical and fitted Cumulative Distribution Function
|
|
|
|
@ -685,7 +706,16 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
optimizer = getattr(optimize, optimizer)
|
|
|
|
|
except AttributeError:
|
|
|
|
|
raise ValueError, "%s is not a valid optimizer" % optimizer
|
|
|
|
|
vals = optimizer(func,x0,args=(ravel(data),),disp=0)
|
|
|
|
|
loglike = numpy.inf
|
|
|
|
|
for num_times in range(5):
|
|
|
|
|
vals = optimizer(func,x0,args=(ravel(data),),disp=0)
|
|
|
|
|
ll = func(vals, ravel(data))
|
|
|
|
|
if ll<loglike:
|
|
|
|
|
loglike = ll
|
|
|
|
|
x0 = vals
|
|
|
|
|
else:
|
|
|
|
|
vals = x0
|
|
|
|
|
|
|
|
|
|
vals = tuple(vals)
|
|
|
|
|
else:
|
|
|
|
|
vals = tuple(x0)
|
|
|
|
@ -716,87 +746,99 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
def fitfun(self, phat):
|
|
|
|
|
return self._fitfun(phat, self.data)
|
|
|
|
|
|
|
|
|
|
def _fxfitfun(self, phat10):
|
|
|
|
|
self.par[self.i_notfixed] = phat10
|
|
|
|
|
return self._fitfun(self.par, self.data)
|
|
|
|
|
|
|
|
|
|
def profile(self, **kwds):
|
|
|
|
|
''' Profile Log- likelihood or Log Product Spacing- function,
|
|
|
|
|
which can be used for constructing confidence interval for
|
|
|
|
|
either phat(i), probability or quantile.
|
|
|
|
|
|
|
|
|
|
CALL: Lp = RV.profile(**kwds)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RV = object with ML or MPS estimated distribution parameters.
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
**kwds : named arguments with keys:
|
|
|
|
|
i - Integer defining which distribution parameter to
|
|
|
|
|
profile, i.e. which parameter to keep fixed
|
|
|
|
|
(default index to first non-fixed parameter)
|
|
|
|
|
pmin, pmax - Interval for either the parameter, phat(i), prb, or x,
|
|
|
|
|
used in the optimization of the profile function (default
|
|
|
|
|
is based on the 100*(1-alpha)% confidence interval
|
|
|
|
|
computed using the delta method.)
|
|
|
|
|
N - Max number of points used in Lp (default 100)
|
|
|
|
|
x - Quantile (return value)
|
|
|
|
|
logSF - log survival probability,i.e., R = Prob(X>x;phat)
|
|
|
|
|
link - function connecting the quantile (x) and the
|
|
|
|
|
survival probability (R) with the fixed distribution
|
|
|
|
|
parameter, i.e.: self.par[i] = link(x,logSF,self.par,i),
|
|
|
|
|
where logSF = log(Prob(X>x;phat)).
|
|
|
|
|
This means that if:
|
|
|
|
|
1) x is not None then x is profiled
|
|
|
|
|
2) logSF is not None then logSF is profiled
|
|
|
|
|
3) x and logSF both are None then self.par[i] is profiled (default)
|
|
|
|
|
alpha - confidence coefficent (default 0.05)
|
|
|
|
|
Returns
|
|
|
|
|
--------
|
|
|
|
|
Lp = Profile log-likelihood function with parameters phat given
|
|
|
|
|
the data, phat(i), probability (prb) and quantile (x) (if given), i.e.,
|
|
|
|
|
Lp = max(log(f(phat|data,phat(i)))),
|
|
|
|
|
or
|
|
|
|
|
Lp = max(log(f(phat|data,phat(i),x,prb)))
|
|
|
|
|
|
|
|
|
|
PROFILE is a utility function for making inferences either on a particular
|
|
|
|
|
component of the vector phat or the quantile, x, or the probability, R.
|
|
|
|
|
This is usually more accurate than using the delta method assuming
|
|
|
|
|
asymptotic normality of the ML estimator or the MPS estimator.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
--------
|
|
|
|
|
# MLE and better CI for phat.par[0]
|
|
|
|
|
>>> R = weibull_min.rvs(1,size=100);
|
|
|
|
|
>>> phat = weibull_min.fit(R)
|
|
|
|
|
>>> Lp = phat.profile(i=0)
|
|
|
|
|
>>> Lp.plot()
|
|
|
|
|
>>> Lp.get_CI(alpha=0.1)
|
|
|
|
|
>>> R = 1./990
|
|
|
|
|
>>> x = phat.isf(R)
|
|
|
|
|
|
|
|
|
|
# CI for x
|
|
|
|
|
>>> Lx = phat.profile(i=1,x=x,link=phat.dist.link)
|
|
|
|
|
>>> Lx.plot()
|
|
|
|
|
>>> Lx.get_CI(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
# CI for logSF=log(SF)
|
|
|
|
|
>>> Lpr = phat.profile(i=1,logSF=log(R),link = phat.dist.link)
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
Profile
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
**kwds : named arguments with keys
|
|
|
|
|
i : scalar integer
|
|
|
|
|
defining which distribution parameter to profile, i.e. which
|
|
|
|
|
parameter to keep fixed (default index to first non-fixed parameter)
|
|
|
|
|
pmin, pmax : real scalars
|
|
|
|
|
Interval for either the parameter, phat(i), prb, or x, used in the
|
|
|
|
|
optimization of the profile function (default is based on the
|
|
|
|
|
100*(1-alpha)% confidence interval computed using the delta method.)
|
|
|
|
|
N : scalar integer
|
|
|
|
|
Max number of points used in Lp (default 100)
|
|
|
|
|
x : real scalar
|
|
|
|
|
Quantile (return value) (default None)
|
|
|
|
|
logSF : real scalar
|
|
|
|
|
log survival probability,i.e., SF = Prob(X>x;phat) (default None)
|
|
|
|
|
link : function connecting the quantile (x) and the survival probability
|
|
|
|
|
(SF) with the fixed distribution parameter, i.e.:
|
|
|
|
|
self.par[i] = link(x,logSF,self.par,i), where logSF = log(Prob(X>x;phat)).
|
|
|
|
|
This means that if:
|
|
|
|
|
1) x is not None then x is profiled
|
|
|
|
|
2) logSF is not None then logSF is profiled
|
|
|
|
|
3) x and logSF both are None then self.par[i] is profiled (default)
|
|
|
|
|
alpha : real scalar
|
|
|
|
|
confidence coefficent (default 0.05)
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
Lp : Profile log-likelihood function with parameters phat given
|
|
|
|
|
the data, phat(i), probability (prb) and quantile (x) (if given), i.e.,
|
|
|
|
|
Lp = max(log(f(phat|data,phat(i)))),
|
|
|
|
|
or
|
|
|
|
|
Lp = max(log(f(phat|data,phat(i),x,prb)))
|
|
|
|
|
|
|
|
|
|
Member methods
|
|
|
|
|
-------------
|
|
|
|
|
plot() : Plot profile function with 100(1-alpha)% confidence interval
|
|
|
|
|
get_bounds() : Return 100(1-alpha)% confidence interval
|
|
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
|
----------------
|
|
|
|
|
fit_dist : FitDistribution data object.
|
|
|
|
|
data : profile function values
|
|
|
|
|
args : profile function arguments
|
|
|
|
|
alpha : confidence coefficient
|
|
|
|
|
Lmax : Maximum value of profile function
|
|
|
|
|
alpha_cross_level :
|
|
|
|
|
|
|
|
|
|
PROFILE is a utility function for making inferences either on a particular
|
|
|
|
|
component of the vector phat or the quantile, x, or the probability, SF.
|
|
|
|
|
This is usually more accurate than using the delta method assuming
|
|
|
|
|
asymptotic normality of the ML estimator or the MPS estimator.
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
--------
|
|
|
|
|
# MLE
|
|
|
|
|
>>> import numpy as np
|
|
|
|
|
>>> import wafo.stats as ws
|
|
|
|
|
>>> R = ws.weibull_min.rvs(1,size=100);
|
|
|
|
|
>>> phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
|
|
|
|
|
|
|
|
|
|
# Better CI for phat.par[i=0]
|
|
|
|
|
>>> Lp = Profile(phat, i=0)
|
|
|
|
|
>>> Lp.plot()
|
|
|
|
|
>>> phat_ci = Lp.get_bounds(alpha=0.1)
|
|
|
|
|
|
|
|
|
|
>>> SF = 1./990
|
|
|
|
|
>>> x = phat.isf(SF)
|
|
|
|
|
|
|
|
|
|
# CI for x
|
|
|
|
|
>>> Lx = phat.profile(i=0, x=x, link=phat.dist.link)
|
|
|
|
|
>>> Lx.plot()
|
|
|
|
|
>>> x_ci = Lx.get_bounds(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
# CI for logSF=log(SF)
|
|
|
|
|
>>> Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
|
|
|
|
|
>>> Lsf.plot()
|
|
|
|
|
>>> sf_ci = Lsf.get_bounds(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
Profile
|
|
|
|
|
'''
|
|
|
|
|
if not self.par_fix == None:
|
|
|
|
|
i1 = kwds.setdefault('i', (1 - numpy.isfinite(self.par_fix)).argmax())
|
|
|
|
|
|
|
|
|
|
return Profile(self, **kwds)
|
|
|
|
|
|
|
|
|
|
def plotfitsumry(self):
|
|
|
|
|
def plotfitsummary(self):
|
|
|
|
|
''' Plot various diagnostic plots to asses the quality of the fit.
|
|
|
|
|
|
|
|
|
|
PLOTFITSUMRY displays probability plot, density plot, residual quantile
|
|
|
|
|
PLOTFITSUMMARY displays probability plot, density plot, residual quantile
|
|
|
|
|
plot and residual probability plot.
|
|
|
|
|
The purpose of these plots is to graphically assess whether the data
|
|
|
|
|
could come from the fitted distribution. If so the empirical- CDF and PDF
|
|
|
|
@ -972,7 +1014,20 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
|
|
|
|
|
import wafo.stats as ws
|
|
|
|
|
R = ws.weibull_min.rvs(1,size=100);
|
|
|
|
|
phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
|
|
|
|
|
|
|
|
|
|
# Better CI for phat.par[i=0]
|
|
|
|
|
Lp = Profile(phat, i=0)
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#import doctest
|
|
|
|
|
#doctest.testmod()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# _WAFODIST = ppimport('wafo.stats.distributions')
|
|
|
|
|
# #nbinom(10, 0.75).rvs(3)
|
|
|
|
|
# import matplotlib
|
|
|
|
@ -986,19 +1041,19 @@ def main():
|
|
|
|
|
# phat = _WAFODIST.weibull_min.fit(R, 1, 1, par_fix=[nan, 0, nan])
|
|
|
|
|
# Lp = phat.profile(i=0)
|
|
|
|
|
# Lp.plot()
|
|
|
|
|
# Lp.get_CI(alpha=0.1)
|
|
|
|
|
# Lp.get_bounds(alpha=0.1)
|
|
|
|
|
# R = 1. / 990
|
|
|
|
|
# x = phat.isf(R)
|
|
|
|
|
#
|
|
|
|
|
# # CI for x
|
|
|
|
|
# Lx = phat.profile(i=0, x=x)
|
|
|
|
|
# Lx.plot()
|
|
|
|
|
# Lx.get_CI(alpha=0.2)
|
|
|
|
|
# Lx.get_bounds(alpha=0.2)
|
|
|
|
|
#
|
|
|
|
|
# # CI for logSF=log(SF)
|
|
|
|
|
# Lpr = phat.profile(i=0, logSF=log(R), link=phat.dist.link)
|
|
|
|
|
# Lpr.plot()
|
|
|
|
|
# Lpr.get_CI(alpha=0.075)
|
|
|
|
|
# Lpr.get_bounds(alpha=0.075)
|
|
|
|
|
#
|
|
|
|
|
# _WAFODIST.dlaplace.stats(0.8, loc=0)
|
|
|
|
|
## pass
|
|
|
|
@ -1020,4 +1075,4 @@ def main():
|
|
|
|
|
# lp = pht.profile()
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
main()
|
|
|
|
|
main()
|
|
|
|
|