|
|
@ -2228,7 +2228,67 @@ class TimeSeries(WafoData):
|
|
|
|
#wafostamp
|
|
|
|
#wafostamp
|
|
|
|
return figs
|
|
|
|
return figs
|
|
|
|
|
|
|
|
|
|
|
|
def sensortypeid(*sensortypes):
|
|
|
|
def hyperbolic_ratio(a, b, sa, sb):
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
Return ratio of hyperbolic functions
|
|
|
|
|
|
|
|
to allow extreme variations of arguments.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
a, b : array-like
|
|
|
|
|
|
|
|
arguments vectors of the same size
|
|
|
|
|
|
|
|
sa, sb : scalar integers
|
|
|
|
|
|
|
|
defining the hyperbolic function used, i.e., f(x,1)=cosh(x), f(x,-1)=sinh(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
r : ndarray
|
|
|
|
|
|
|
|
f(a,sa)/f(b,sb), ratio of hyperbolic functions of same
|
|
|
|
|
|
|
|
size as a and b
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
|
|
|
--------
|
|
|
|
|
|
|
|
>>> x = [-2,0,2]
|
|
|
|
|
|
|
|
>>> hyperbolic_ratio(x,1,1,1) # gives r=cosh(x)/cosh(1)
|
|
|
|
|
|
|
|
array([ 2.438107 , 0.64805427, 2.438107 ])
|
|
|
|
|
|
|
|
>>> hyperbolic_ratio(x,1,1,-1) # gives r=cosh(x)/sinh(1)
|
|
|
|
|
|
|
|
array([ 3.20132052, 0.85091813, 3.20132052])
|
|
|
|
|
|
|
|
>>> hyperbolic_ratio(x,1,-1,1) # gives r=sinh(x)/cosh(1)
|
|
|
|
|
|
|
|
array([-2.35040239, 0. , 2.35040239])
|
|
|
|
|
|
|
|
>>> hyperbolic_ratio(x,1,-1,-1) # gives r=sinh(x)/sinh(1)
|
|
|
|
|
|
|
|
array([-3.08616127, 0. , 3.08616127])
|
|
|
|
|
|
|
|
>>> hyperbolic_ratio(1,x,1,1) # gives r=cosh(1)/cosh(x)
|
|
|
|
|
|
|
|
array([ 0.41015427, 1.54308063, 0.41015427])
|
|
|
|
|
|
|
|
>>> hyperbolic_ratio(1,x,1,-1) # gives r=cosh(1)/sinh(x)
|
|
|
|
|
|
|
|
array([-0.42545906, inf, 0.42545906])
|
|
|
|
|
|
|
|
>>> hyperbolic_ratio(1,x,-1,1) # gives r=sinh(1)/cosh(x)
|
|
|
|
|
|
|
|
array([ 0.3123711 , 1.17520119, 0.3123711 ])
|
|
|
|
|
|
|
|
>>> hyperbolic_ratio(1,x,-1,-1) # gives r=sinh(1)/sinh(x)
|
|
|
|
|
|
|
|
array([-0.32402714, inf, 0.32402714])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
|
|
|
--------
|
|
|
|
|
|
|
|
tran
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
ak, bk, sak, sbk = np.atleast_1d(a, b, sign(sa), sign(sb))
|
|
|
|
|
|
|
|
# old call
|
|
|
|
|
|
|
|
#return exp(ak-bk)*(1+sak*exp(-2*ak))/(1+sbk*exp(-2*bk))
|
|
|
|
|
|
|
|
# TODO: Does not always handle division by zero correctly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
signRatio = np.where(sak * ak < 0, sak, 1)
|
|
|
|
|
|
|
|
signRatio = np.where(sbk * bk < 0, sbk * signRatio, signRatio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bk = np.abs(bk)
|
|
|
|
|
|
|
|
ak = np.abs(ak)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num = np.where(sak < 0, expm1(-2 * ak), 1 + exp(-2 * ak))
|
|
|
|
|
|
|
|
den = np.where(sbk < 0, expm1(-2 * bk), 1 + exp(-2 * bk))
|
|
|
|
|
|
|
|
iden = np.ones(den.shape) * inf
|
|
|
|
|
|
|
|
ind = np.flatnonzero(den != 0)
|
|
|
|
|
|
|
|
iden.flat[ind] = 1.0 / den[ind]
|
|
|
|
|
|
|
|
val = np.where(num == den, 1, num * iden)
|
|
|
|
|
|
|
|
return signRatio * exp(ak - bk) * val #((sak+exp(-2*ak))/(sbk+exp(-2*bk)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sensor_typeid(*sensortypes):
|
|
|
|
''' Return ID for sensortype name
|
|
|
|
''' Return ID for sensortype name
|
|
|
|
|
|
|
|
|
|
|
|
Parameter
|
|
|
|
Parameter
|
|
|
@ -2260,14 +2320,14 @@ def sensortypeid(*sensortypes):
|
|
|
|
17, 'Z_p' : Water particle displacement in z-direction from its mean position
|
|
|
|
17, 'Z_p' : Water particle displacement in z-direction from its mean position
|
|
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
Example:
|
|
|
|
>>> sensortypeid('W','v')
|
|
|
|
>>> sensor_typeid('W','v')
|
|
|
|
[11, 10]
|
|
|
|
[11, 10]
|
|
|
|
>>> sensortypeid('rubbish')
|
|
|
|
>>> sensor_typeid('rubbish')
|
|
|
|
[nan]
|
|
|
|
[nan]
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
--------
|
|
|
|
sensortype
|
|
|
|
sensor_type
|
|
|
|
'''
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
sensorid_table = dict(n=0, n_t=1, n_tt=2, n_x=3, n_y=4, n_xx=5,
|
|
|
|
sensorid_table = dict(n=0, n_t=1, n_tt=2, n_x=3, n_y=4, n_xx=5,
|
|
|
@ -2280,7 +2340,7 @@ def sensortypeid(*sensortypes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sensortype(*sensorids):
|
|
|
|
def sensor_type(*sensorids):
|
|
|
|
'''
|
|
|
|
'''
|
|
|
|
Return sensortype name
|
|
|
|
Return sensortype name
|
|
|
|
|
|
|
|
|
|
|
@ -2312,7 +2372,7 @@ def sensortype(*sensorids):
|
|
|
|
17, 'Z_p' : Water particle displacement in z-direction from its mean position
|
|
|
|
17, 'Z_p' : Water particle displacement in z-direction from its mean position
|
|
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
Example:
|
|
|
|
>>> sensortype(range(3))
|
|
|
|
>>> sensor_type(range(3))
|
|
|
|
('n', 'n_t', 'n_tt')
|
|
|
|
('n', 'n_t', 'n_tt')
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
See also
|
|
|
@ -2333,6 +2393,393 @@ def sensortype(*sensorids):
|
|
|
|
#except:
|
|
|
|
#except:
|
|
|
|
# raise ValueError('Input must be an integer!')
|
|
|
|
# raise ValueError('Input must be an integer!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TransferFunction(object):
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
Class for computing transfer functions based on linear wave theory
|
|
|
|
|
|
|
|
of the system with input surface elevation,
|
|
|
|
|
|
|
|
eta(x0,y0,t) = exp(i*(kx*x0+ky*y0-w*t)),
|
|
|
|
|
|
|
|
and output Y determined by sensortype and position of sensor.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Member methods
|
|
|
|
|
|
|
|
--------------
|
|
|
|
|
|
|
|
tran(w, theta, kw)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hw = a function of frequency only (not direction) size 1 x Nf
|
|
|
|
|
|
|
|
Gwt = a function of frequency and direction size Nt x Nf
|
|
|
|
|
|
|
|
w = vector of angular frequencies in Rad/sec. Length Nf
|
|
|
|
|
|
|
|
theta = vector of directions in radians Length Nt (default 0)
|
|
|
|
|
|
|
|
( theta = 0 -> positive x axis theta = pi/2 -> positive y axis)
|
|
|
|
|
|
|
|
Member variables
|
|
|
|
|
|
|
|
----------------
|
|
|
|
|
|
|
|
pos : [x,y,z]
|
|
|
|
|
|
|
|
vector giving coordinate position relative to [x0 y0 z0] (default [0,0,0])
|
|
|
|
|
|
|
|
sensortype = string
|
|
|
|
|
|
|
|
defining the sensortype or transfer function in output.
|
|
|
|
|
|
|
|
0, 'n' : Surface elevation (n=Eta) (default)
|
|
|
|
|
|
|
|
1, 'n_t' : Vertical surface velocity
|
|
|
|
|
|
|
|
2, 'n_tt' : Vertical surface acceleration
|
|
|
|
|
|
|
|
3, 'n_x' : Surface slope in x-direction
|
|
|
|
|
|
|
|
4, 'n_y' : Surface slope in y-direction
|
|
|
|
|
|
|
|
5, 'n_xx' : Surface curvature in x-direction
|
|
|
|
|
|
|
|
6, 'n_yy' : Surface curvature in y-direction
|
|
|
|
|
|
|
|
7, 'n_xy' : Surface curvature in xy-direction
|
|
|
|
|
|
|
|
8, 'P' : Pressure fluctuation about static MWL pressure
|
|
|
|
|
|
|
|
9, 'U' : Water particle velocity in x-direction
|
|
|
|
|
|
|
|
10, 'V' : Water particle velocity in y-direction
|
|
|
|
|
|
|
|
11, 'W' : Water particle velocity in z-direction
|
|
|
|
|
|
|
|
12, 'U_t' : Water particle acceleration in x-direction
|
|
|
|
|
|
|
|
13, 'V_t' : Water particle acceleration in y-direction
|
|
|
|
|
|
|
|
14, 'W_t' : Water particle acceleration in z-direction
|
|
|
|
|
|
|
|
15, 'X_p' : Water particle displacement in x-direction from its mean position
|
|
|
|
|
|
|
|
16, 'Y_p' : Water particle displacement in y-direction from its mean position
|
|
|
|
|
|
|
|
17, 'Z_p' : Water particle displacement in z-direction from its mean position
|
|
|
|
|
|
|
|
h : real scalar
|
|
|
|
|
|
|
|
water depth (default inf)
|
|
|
|
|
|
|
|
g : real scalar
|
|
|
|
|
|
|
|
acceleration of gravity (default 9.81 m/s**2)
|
|
|
|
|
|
|
|
rho : real scalar
|
|
|
|
|
|
|
|
water density (default 1028 kg/m**3)
|
|
|
|
|
|
|
|
bet : 1 or -1
|
|
|
|
|
|
|
|
1, theta given in terms of directions toward which waves travel (default)
|
|
|
|
|
|
|
|
-1, theta given in terms of directions from which waves come
|
|
|
|
|
|
|
|
igam : 1,2 or 3
|
|
|
|
|
|
|
|
1, if z is measured positive upward from mean water level (default)
|
|
|
|
|
|
|
|
2, if z is measured positive downward from mean water level
|
|
|
|
|
|
|
|
3, if z is measured positive upward from sea floor
|
|
|
|
|
|
|
|
thetax, thetay : real scalars
|
|
|
|
|
|
|
|
angle in degrees clockwise from true north to positive x-axis and
|
|
|
|
|
|
|
|
positive y-axis, respectively. (default theatx=90, thetay=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
>>> import pylab as plt
|
|
|
|
|
|
|
|
>>> N=50; f0=0.1; th0=0; h=50; w0 = 2*pi*f0
|
|
|
|
|
|
|
|
>>> t = np.linspace(0,15,N)
|
|
|
|
|
|
|
|
>>> eta0 = np.exp(-1j*w0*t)
|
|
|
|
|
|
|
|
>>> stypes = ['n', 'n_x', 'n_y'];
|
|
|
|
|
|
|
|
>>> tf = TransferFunction(pos=(0, 0, 0), h=50)
|
|
|
|
|
|
|
|
>>> vals = []
|
|
|
|
|
|
|
|
>>> fh = plt.plot(t, eta0.real, 'r.')
|
|
|
|
|
|
|
|
>>> plt.hold(True)
|
|
|
|
|
|
|
|
>>> for i,stype in enumerate(stypes):
|
|
|
|
|
|
|
|
... tf.sensortype = stype
|
|
|
|
|
|
|
|
... Hw, Gwt = tf.tran(w0,th0)
|
|
|
|
|
|
|
|
... vals.append((Hw*Gwt*eta0).real.ravel())
|
|
|
|
|
|
|
|
... vals[i]
|
|
|
|
|
|
|
|
... fh = plt.plot(t, vals[i])
|
|
|
|
|
|
|
|
>>> plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
|
|
|
--------
|
|
|
|
|
|
|
|
dat2dspec, sensor_type, sensor_typeid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Reference
|
|
|
|
|
|
|
|
---------
|
|
|
|
|
|
|
|
Young I.R. (1994)
|
|
|
|
|
|
|
|
"On the measurement of directional spectra",
|
|
|
|
|
|
|
|
Applied Ocean Research, Vol 16, pp 283-294
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
def __init__(self, pos=(0, 0, 0), sensortype='n', h=inf, g=9.81, rho=1028,
|
|
|
|
|
|
|
|
bet=1, igam=1, thetax=90, thetay=0):
|
|
|
|
|
|
|
|
self.pos = pos
|
|
|
|
|
|
|
|
self.sensortype = sensortype if isinstance(sensortype, str) else sensor_type(sensortype)
|
|
|
|
|
|
|
|
self.h = h
|
|
|
|
|
|
|
|
self.g = g
|
|
|
|
|
|
|
|
self.rho = rho
|
|
|
|
|
|
|
|
self.bet = bet
|
|
|
|
|
|
|
|
self.igam = igam
|
|
|
|
|
|
|
|
self.thetax = thetax
|
|
|
|
|
|
|
|
self.thetay = thetay
|
|
|
|
|
|
|
|
self._tran_dict = dict(n=self._n, n_t=self._n_t, n_tt=self._n_tt,
|
|
|
|
|
|
|
|
n_x=self._n_x, n_y=self._n_y, n_xx=self._n_xx,
|
|
|
|
|
|
|
|
n_yy=self._n_yy, n_xy=self._n_xy,
|
|
|
|
|
|
|
|
P=self._p, p=self._p,
|
|
|
|
|
|
|
|
U=self._u, u=self._u,
|
|
|
|
|
|
|
|
V=self._v, v=self._v,
|
|
|
|
|
|
|
|
W=self._w, w=self._w,
|
|
|
|
|
|
|
|
U_t=self._u_t, u_t=self._u_t,
|
|
|
|
|
|
|
|
V_t=self._v_t, v_t=self._v_t,
|
|
|
|
|
|
|
|
W_t=self._w_t, w_t=self._w_t,
|
|
|
|
|
|
|
|
X_p=self._x_p, x_p=self._x_p,
|
|
|
|
|
|
|
|
Y_p=self._y_p, y_p=self._y_p,
|
|
|
|
|
|
|
|
Z_p=self._z_p, z_p=self._z_p)
|
|
|
|
|
|
|
|
def tran(self, w, theta=0, kw=None):
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
Return transfer functions based on linear wave theory
|
|
|
|
|
|
|
|
of the system with input surface elevation,
|
|
|
|
|
|
|
|
eta(x0,y0,t) = exp(i*(kx*x0+ky*y0-w*t)),
|
|
|
|
|
|
|
|
and output,
|
|
|
|
|
|
|
|
Y = Hw*Gwt*eta, determined by sensortype and position of sensor.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
w : array-like
|
|
|
|
|
|
|
|
vector of angular frequencies in Rad/sec. Length Nf
|
|
|
|
|
|
|
|
theta : array-like
|
|
|
|
|
|
|
|
vector of directions in radians Length Nt (default 0)
|
|
|
|
|
|
|
|
( theta = 0 -> positive x axis theta = pi/2 -> positive y axis)
|
|
|
|
|
|
|
|
kw : array-like
|
|
|
|
|
|
|
|
vector of wave numbers corresponding to angular frequencies, w. Length Nf
|
|
|
|
|
|
|
|
(default calculated with w2k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
Hw = transfer function of frequency only (not direction) size 1 x Nf
|
|
|
|
|
|
|
|
Gwt = transfer function of frequency and direction size Nt x Nf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The complete transfer function Hwt = Hw*Gwt is a function of
|
|
|
|
|
|
|
|
w (columns) and theta (rows) size Nt x Nf
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
if kw is None:
|
|
|
|
|
|
|
|
kw, unusedkw2 = w2k(w, 0, self.h) #wave number as function of angular frequency
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
w, theta, kw = np.atleast_1d(w, theta, kw)
|
|
|
|
|
|
|
|
# make sure they have the correct orientation
|
|
|
|
|
|
|
|
theta.shape = (-1, 1)
|
|
|
|
|
|
|
|
kw.shape = (-1,)
|
|
|
|
|
|
|
|
w.shape = (-1,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tran_fun = self._tran_dict[self.sensortype]
|
|
|
|
|
|
|
|
Hw, Gwt = tran_fun(w, theta, kw)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# New call to avoid singularities. pab 07.11.2000
|
|
|
|
|
|
|
|
# Set Hw to 0 for expressions w*hyperbolic_ratio(z*k,h*k,1,-1)= 0*inf
|
|
|
|
|
|
|
|
ind = np.flatnonzero(1 - np.isfinite(Hw))
|
|
|
|
|
|
|
|
Hw.flat[ind] = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sgn = sign(Hw);
|
|
|
|
|
|
|
|
k0 = np.flatnonzero(sgn < 0)
|
|
|
|
|
|
|
|
if len(k0): # make sure Hw>=0 ie. transfer negative signs to Gwt
|
|
|
|
|
|
|
|
Gwt[:, k0] = -Gwt[:, k0]
|
|
|
|
|
|
|
|
Hw[:, k0] = -Hw[:, k0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.igam == 2:
|
|
|
|
|
|
|
|
#pab 09 Oct.2002: bug fix
|
|
|
|
|
|
|
|
# Changing igam by 2 should affect the directional result in the same way that changing eta by -eta!
|
|
|
|
|
|
|
|
Gwt = -Gwt
|
|
|
|
|
|
|
|
return Hw, Gwt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#---Private member methods
|
|
|
|
|
|
|
|
def _get_ee_cthxy(self, theta, kw):
|
|
|
|
|
|
|
|
# convert to from angle in degrees to radians
|
|
|
|
|
|
|
|
bet = self.bet
|
|
|
|
|
|
|
|
thxr = self.thetax * pi / 180
|
|
|
|
|
|
|
|
thyr = self.thetay * pi / 180
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cthx = bet * cos(theta - thxr + pi / 2)
|
|
|
|
|
|
|
|
#cthy = cos(theta-thyr-pi/2)
|
|
|
|
|
|
|
|
cthy = bet * sin(theta - thyr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Compute location complex exponential
|
|
|
|
|
|
|
|
x, y, unused_z = list(self.pos)
|
|
|
|
|
|
|
|
ee = exp((1j * (x * cthx + y * cthy)) * kw) # exp(i*k(w)*(x*cos(theta)+y*sin(theta)) size Nt X Nf
|
|
|
|
|
|
|
|
return ee, cthx, cthy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_zk(self, kw):
|
|
|
|
|
|
|
|
h = self.h
|
|
|
|
|
|
|
|
z = self.pos[2]
|
|
|
|
|
|
|
|
if self.igam == 1:
|
|
|
|
|
|
|
|
zk = kw * (h + z) # z measured positive upward from mean water level (default)
|
|
|
|
|
|
|
|
elif self.igam == 2:
|
|
|
|
|
|
|
|
zk = kw * (h - z) # z measured positive downward from mean water level
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
zk = kw * z # z measured positive upward from sea floor
|
|
|
|
|
|
|
|
return zk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#--- Surface elevation ---
|
|
|
|
|
|
|
|
def _n(self, w, theta, kw):
|
|
|
|
|
|
|
|
'''n = Eta = wave profile
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
return np.ones_like(w), ee
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#---- Vertical surface velocity and acceleration-----
|
|
|
|
|
|
|
|
def _n_t(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' n_t = Eta_t '''
|
|
|
|
|
|
|
|
ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
return w, -1j * ee;
|
|
|
|
|
|
|
|
def _n_tt(self, w, theta, kw):
|
|
|
|
|
|
|
|
'''n_tt = Eta_tt'''
|
|
|
|
|
|
|
|
ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
return w ** 2, -ee
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#--- Surface slopes ---
|
|
|
|
|
|
|
|
def _n_x(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' n_x = Eta_x = x-slope'''
|
|
|
|
|
|
|
|
ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
return kw, 1j * cthx * ee
|
|
|
|
|
|
|
|
def _n_y(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' n_y = Eta_y = y-slope'''
|
|
|
|
|
|
|
|
ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
return kw, 1j * cthy * ee
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#--- Surface curvatures ---
|
|
|
|
|
|
|
|
def _n_xx(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' n_xx = Eta_xx = Surface curvature (x-dir)'''
|
|
|
|
|
|
|
|
ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
return kw ** 2, -(cthx ** 2) * ee
|
|
|
|
|
|
|
|
def _n_yy(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' n_yy = Eta_yy = Surface curvature (y-dir)'''
|
|
|
|
|
|
|
|
ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
return kw ** 2, -cthy ** 2 * ee
|
|
|
|
|
|
|
|
def _n_xy(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' n_xy = Eta_xy = Surface curvature (xy-dir)'''
|
|
|
|
|
|
|
|
ee, cthx, cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
return kw ** 2, -cthx * cthy * ee
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#--- Pressure---
|
|
|
|
|
|
|
|
def _p(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' pressure fluctuations'''
|
|
|
|
|
|
|
|
ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return self.rho * self.g * hyperbolic_ratio(zk, hk, 1, 1), ee #hyperbolic_ratio = cosh(zk)/cosh(hk)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#---- Water particle velocities ---
|
|
|
|
|
|
|
|
def _u(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' U = x-velocity'''
|
|
|
|
|
|
|
|
ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return w * hyperbolic_ratio(zk, hk, 1, -1), cthx * ee# w*cosh(zk)/sinh(hk), cos(theta)*ee
|
|
|
|
|
|
|
|
def _v(self, w, theta, kw):
|
|
|
|
|
|
|
|
'''V = y-velocity'''
|
|
|
|
|
|
|
|
ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return w * hyperbolic_ratio(zk, hk, 1, -1), cthy * ee # w*cosh(zk)/sinh(hk), sin(theta)*ee
|
|
|
|
|
|
|
|
def _w(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' W = z-velocity'''
|
|
|
|
|
|
|
|
ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return w * hyperbolic_ratio(zk, hk, -1, -1), -1j * ee # w*sinh(zk)/sinh(hk), -?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#---- Water particle acceleration ---
|
|
|
|
|
|
|
|
def _u_t(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' U_t = x-acceleration'''
|
|
|
|
|
|
|
|
ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return (w ** 2) * hyperbolic_ratio(zk, hk, 1, -1), -1j * cthx * ee # w^2*cosh(zk)/sinh(hk), ?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _v_t(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' V_t = y-acceleration'''
|
|
|
|
|
|
|
|
ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return (w ** 2) * hyperbolic_ratio(zk, hk, 1, -1), -1j * cthy * ee # w^2*cosh(zk)/sinh(hk), ?
|
|
|
|
|
|
|
|
def _w_t(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' W_t = z-acceleration'''
|
|
|
|
|
|
|
|
ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return (w ** 2) * hyperbolic_ratio(zk, hk, -1, -1), -ee # w*sinh(zk)/sinh(hk), ?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#---- Water particle displacement ---
|
|
|
|
|
|
|
|
def _x_p(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' X_p = x-displacement'''
|
|
|
|
|
|
|
|
ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return hyperbolic_ratio(zk, hk, 1, -1), 1j * cthx * ee # cosh(zk)./sinh(hk), ?
|
|
|
|
|
|
|
|
def _y_p(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' Y_p = y-displacement'''
|
|
|
|
|
|
|
|
ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return hyperbolic_ratio(zk, hk, 1, -1), 1j * cthy * ee # cosh(zk)./sinh(hk), ?
|
|
|
|
|
|
|
|
def _z_p(self, w, theta, kw):
|
|
|
|
|
|
|
|
''' Z_p = z-displacement'''
|
|
|
|
|
|
|
|
ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw)
|
|
|
|
|
|
|
|
hk = kw * self.h
|
|
|
|
|
|
|
|
zk = self._get_zk(kw)
|
|
|
|
|
|
|
|
return hyperbolic_ratio(zk, hk, -1, -1), ee # sinh(zk)./sinh(hk), ee
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def wave_pressure(z, Hm0, h=10000, g=9.81, rho=1028):
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
Calculate pressure amplitude due to water waves.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
z : array-like
|
|
|
|
|
|
|
|
depth where pressure is calculated [m]
|
|
|
|
|
|
|
|
Hm0 : array-like
|
|
|
|
|
|
|
|
significant wave height (same as the average of the 1/3'rd highest
|
|
|
|
|
|
|
|
waves in a seastate. [m]
|
|
|
|
|
|
|
|
h : real scalar
|
|
|
|
|
|
|
|
waterdepth (default 10000 [m])
|
|
|
|
|
|
|
|
g : real scalar
|
|
|
|
|
|
|
|
acceleration of gravity (default 9.81 m/s**2)
|
|
|
|
|
|
|
|
rho : real scalar
|
|
|
|
|
|
|
|
water density (default 1028 kg/m**3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
p : ndarray
|
|
|
|
|
|
|
|
pressure amplitude due to water waves at water depth z. [Pa]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PRESSURE calculate pressure amplitude due to water waves according to
|
|
|
|
|
|
|
|
linear theory.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
|
|
|
|
-----
|
|
|
|
|
|
|
|
>>> import pylab as plt
|
|
|
|
|
|
|
|
>>> z = -np.linspace(10,20)
|
|
|
|
|
|
|
|
>>> fh = plt.plot(z, wave_pressure(z, Hm0=1, h=20))
|
|
|
|
|
|
|
|
>>> plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
|
|
|
--------
|
|
|
|
|
|
|
|
w2k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u = psweep.Fn*sqrt(mgf.length*9.81)
|
|
|
|
|
|
|
|
z = -10; h = inf;
|
|
|
|
|
|
|
|
Hm0 = 1.5;Tp = 4*sqrt(Hm0);
|
|
|
|
|
|
|
|
S = jonswap([],[Hm0,Tp]);
|
|
|
|
|
|
|
|
Hw = tran(S.w,0,[0 0 -z],'P',h)
|
|
|
|
|
|
|
|
Sm = S;
|
|
|
|
|
|
|
|
Sm.S = Hw.'.*S.S;
|
|
|
|
|
|
|
|
x1 = spec2sdat(Sm,1000);
|
|
|
|
|
|
|
|
pwave = pressure(z,Hm0,h)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plot(psweep.x{1}/u, psweep.f)
|
|
|
|
|
|
|
|
hold on
|
|
|
|
|
|
|
|
plot(x1(1:100,1)-30,x1(1:100,2),'r')
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Assume seastate with jonswap spectrum:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tp = 4 * np.sqrt(Hm0)
|
|
|
|
|
|
|
|
gam = jonswap_peakfact(Hm0, Tp)
|
|
|
|
|
|
|
|
Tm02 = Tp / (1.30301 - 0.01698 * gam + 0.12102 / gam)
|
|
|
|
|
|
|
|
w = 2 * np.pi / Tm02
|
|
|
|
|
|
|
|
kw, unused_kw2 = w2k(w, 0, h)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hk = kw * h
|
|
|
|
|
|
|
|
zk1 = kw * z
|
|
|
|
|
|
|
|
zk = hk + zk1 # z measured positive upward from mean water level (default)
|
|
|
|
|
|
|
|
#zk = hk-zk1; % z measured positive downward from mean water level
|
|
|
|
|
|
|
|
#zk1 = -zk1;
|
|
|
|
|
|
|
|
#zk = zk1; % z measured positive upward from sea floor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# cosh(zk)/cosh(hk) approx exp(zk) for large h
|
|
|
|
|
|
|
|
# hyperbolic_ratio(zk,hk,1,1) = cosh(zk)/cosh(hk)
|
|
|
|
|
|
|
|
# pr = np.where(np.pi < hk, np.exp(zk1), hyperbolic_ratio(zk, hk, 1, 1))
|
|
|
|
|
|
|
|
pr = hyperbolic_ratio(zk, hk, 1, 1)
|
|
|
|
|
|
|
|
pressure = (rho * g * Hm0 / 2) * pr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# pos = [np.zeros_like(z),np.zeros_like(z),z]
|
|
|
|
|
|
|
|
# tf = TransferFunction(pos=pos, sensortype='p', h=h, rho=rho, g=g)
|
|
|
|
|
|
|
|
# Hw, Gwt = tf.tran(w,0)
|
|
|
|
|
|
|
|
# pressure2 = np.abs(Hw) * Hm0 / 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return pressure
|
|
|
|
|
|
|
|
|
|
|
|
def main0():
|
|
|
|
def main0():
|
|
|
|
import wafo
|
|
|
|
import wafo
|
|
|
|
ts = wafo.objects.mat2timeseries(wafo.data.sea())
|
|
|
|
ts = wafo.objects.mat2timeseries(wafo.data.sea())
|
|
|
|