|
|
|
@ -14,11 +14,13 @@ import wafo.stats.mstats as mstats
|
|
|
|
|
from wafo import stats
|
|
|
|
|
from numpy.testing import TestCase, run_module_suite
|
|
|
|
|
from numpy.ma.testutils import (assert_equal, assert_almost_equal,
|
|
|
|
|
assert_array_almost_equal, assert_array_almost_equal_nulp, assert_,
|
|
|
|
|
assert_allclose, assert_raises)
|
|
|
|
|
assert_array_almost_equal,
|
|
|
|
|
assert_array_almost_equal_nulp, assert_,
|
|
|
|
|
assert_allclose, assert_raises)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestMquantiles(TestCase):
|
|
|
|
|
|
|
|
|
|
def test_mquantiles_limit_keyword(self):
|
|
|
|
|
# Regression test for Trac ticket #867
|
|
|
|
|
data = np.array([[6., 7., 1.],
|
|
|
|
@ -40,68 +42,70 @@ class TestMquantiles(TestCase):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestGMean(TestCase):
|
|
|
|
|
|
|
|
|
|
def test_1D(self):
|
|
|
|
|
a = (1,2,3,4)
|
|
|
|
|
a = (1, 2, 3, 4)
|
|
|
|
|
actual = mstats.gmean(a)
|
|
|
|
|
desired = np.power(1*2*3*4,1./4.)
|
|
|
|
|
assert_almost_equal(actual, desired,decimal=14)
|
|
|
|
|
desired = np.power(1 * 2 * 3 * 4, 1. / 4.)
|
|
|
|
|
assert_almost_equal(actual, desired, decimal=14)
|
|
|
|
|
|
|
|
|
|
desired1 = mstats.gmean(a,axis=-1)
|
|
|
|
|
desired1 = mstats.gmean(a, axis=-1)
|
|
|
|
|
assert_almost_equal(actual, desired1, decimal=14)
|
|
|
|
|
assert_(not isinstance(desired1, ma.MaskedArray))
|
|
|
|
|
|
|
|
|
|
a = ma.array((1,2,3,4),mask=(0,0,0,1))
|
|
|
|
|
a = ma.array((1, 2, 3, 4), mask=(0, 0, 0, 1))
|
|
|
|
|
actual = mstats.gmean(a)
|
|
|
|
|
desired = np.power(1*2*3,1./3.)
|
|
|
|
|
assert_almost_equal(actual, desired,decimal=14)
|
|
|
|
|
desired = np.power(1 * 2 * 3, 1. / 3.)
|
|
|
|
|
assert_almost_equal(actual, desired, decimal=14)
|
|
|
|
|
|
|
|
|
|
desired1 = mstats.gmean(a,axis=-1)
|
|
|
|
|
desired1 = mstats.gmean(a, axis=-1)
|
|
|
|
|
assert_almost_equal(actual, desired1, decimal=14)
|
|
|
|
|
|
|
|
|
|
def test_2D(self):
|
|
|
|
|
a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
|
|
|
|
|
mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
|
|
|
|
|
a = ma.array(((1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4)),
|
|
|
|
|
mask=((0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0)))
|
|
|
|
|
actual = mstats.gmean(a)
|
|
|
|
|
desired = np.array((1,2,3,4))
|
|
|
|
|
desired = np.array((1, 2, 3, 4))
|
|
|
|
|
assert_array_almost_equal(actual, desired, decimal=14)
|
|
|
|
|
|
|
|
|
|
desired1 = mstats.gmean(a,axis=0)
|
|
|
|
|
desired1 = mstats.gmean(a, axis=0)
|
|
|
|
|
assert_array_almost_equal(actual, desired1, decimal=14)
|
|
|
|
|
|
|
|
|
|
actual = mstats.gmean(a, -1)
|
|
|
|
|
desired = ma.array((np.power(1*2*3*4,1./4.),
|
|
|
|
|
np.power(2*3,1./2.),
|
|
|
|
|
np.power(1*4,1./2.)))
|
|
|
|
|
desired = ma.array((np.power(1 * 2 * 3 * 4, 1. / 4.),
|
|
|
|
|
np.power(2 * 3, 1. / 2.),
|
|
|
|
|
np.power(1 * 4, 1. / 2.)))
|
|
|
|
|
assert_array_almost_equal(actual, desired, decimal=14)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestHMean(TestCase):
|
|
|
|
|
|
|
|
|
|
def test_1D(self):
|
|
|
|
|
a = (1,2,3,4)
|
|
|
|
|
a = (1, 2, 3, 4)
|
|
|
|
|
actual = mstats.hmean(a)
|
|
|
|
|
desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
|
|
|
|
|
desired = 4. / (1. / 1 + 1. / 2 + 1. / 3 + 1. / 4)
|
|
|
|
|
assert_almost_equal(actual, desired, decimal=14)
|
|
|
|
|
desired1 = mstats.hmean(ma.array(a),axis=-1)
|
|
|
|
|
desired1 = mstats.hmean(ma.array(a), axis=-1)
|
|
|
|
|
assert_almost_equal(actual, desired1, decimal=14)
|
|
|
|
|
|
|
|
|
|
a = ma.array((1,2,3,4),mask=(0,0,0,1))
|
|
|
|
|
a = ma.array((1, 2, 3, 4), mask=(0, 0, 0, 1))
|
|
|
|
|
actual = mstats.hmean(a)
|
|
|
|
|
desired = 3. / (1./1 + 1./2 + 1./3)
|
|
|
|
|
assert_almost_equal(actual, desired,decimal=14)
|
|
|
|
|
desired1 = mstats.hmean(a,axis=-1)
|
|
|
|
|
desired = 3. / (1. / 1 + 1. / 2 + 1. / 3)
|
|
|
|
|
assert_almost_equal(actual, desired, decimal=14)
|
|
|
|
|
desired1 = mstats.hmean(a, axis=-1)
|
|
|
|
|
assert_almost_equal(actual, desired1, decimal=14)
|
|
|
|
|
|
|
|
|
|
def test_2D(self):
|
|
|
|
|
a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
|
|
|
|
|
mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
|
|
|
|
|
a = ma.array(((1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4)),
|
|
|
|
|
mask=((0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0)))
|
|
|
|
|
actual = mstats.hmean(a)
|
|
|
|
|
desired = ma.array((1,2,3,4))
|
|
|
|
|
desired = ma.array((1, 2, 3, 4))
|
|
|
|
|
assert_array_almost_equal(actual, desired, decimal=14)
|
|
|
|
|
|
|
|
|
|
actual1 = mstats.hmean(a,axis=-1)
|
|
|
|
|
desired = (4./(1/1.+1/2.+1/3.+1/4.),
|
|
|
|
|
2./(1/2.+1/3.),
|
|
|
|
|
2./(1/1.+1/4.)
|
|
|
|
|
actual1 = mstats.hmean(a, axis=-1)
|
|
|
|
|
desired = (4. / (1 / 1. + 1 / 2. + 1 / 3. + 1 / 4.),
|
|
|
|
|
2. / (1 / 2. + 1 / 3.),
|
|
|
|
|
2. / (1 / 1. + 1 / 4.)
|
|
|
|
|
)
|
|
|
|
|
assert_array_almost_equal(actual1, desired, decimal=14)
|
|
|
|
|
|
|
|
|
@ -112,18 +116,24 @@ class TestRanking(TestCase):
|
|
|
|
|
TestCase.__init__(self, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
def test_ranking(self):
|
|
|
|
|
x = ma.array([0,1,1,1,2,3,4,5,5,6,])
|
|
|
|
|
assert_almost_equal(mstats.rankdata(x),[1,3,3,3,5,6,7,8.5,8.5,10])
|
|
|
|
|
x[[3,4]] = masked
|
|
|
|
|
assert_almost_equal(mstats.rankdata(x),[1,2.5,2.5,0,0,4,5,6.5,6.5,8])
|
|
|
|
|
assert_almost_equal(mstats.rankdata(x,use_missing=True),
|
|
|
|
|
[1,2.5,2.5,4.5,4.5,4,5,6.5,6.5,8])
|
|
|
|
|
x = ma.array([0,1,5,1,2,4,3,5,1,6,])
|
|
|
|
|
assert_almost_equal(mstats.rankdata(x),[1,3,8.5,3,5,7,6,8.5,3,10])
|
|
|
|
|
x = ma.array([[0,1,1,1,2], [3,4,5,5,6,]])
|
|
|
|
|
assert_almost_equal(mstats.rankdata(x),[[1,3,3,3,5],[6,7,8.5,8.5,10]])
|
|
|
|
|
assert_almost_equal(mstats.rankdata(x,axis=1),[[1,3,3,3,5],[1,2,3.5,3.5,5]])
|
|
|
|
|
assert_almost_equal(mstats.rankdata(x,axis=0),[[1,1,1,1,1],[2,2,2,2,2,]])
|
|
|
|
|
x = ma.array([0, 1, 1, 1, 2, 3, 4, 5, 5, 6, ])
|
|
|
|
|
assert_almost_equal(
|
|
|
|
|
mstats.rankdata(x), [1, 3, 3, 3, 5, 6, 7, 8.5, 8.5, 10])
|
|
|
|
|
x[[3, 4]] = masked
|
|
|
|
|
assert_almost_equal(
|
|
|
|
|
mstats.rankdata(x), [1, 2.5, 2.5, 0, 0, 4, 5, 6.5, 6.5, 8])
|
|
|
|
|
assert_almost_equal(mstats.rankdata(x, use_missing=True),
|
|
|
|
|
[1, 2.5, 2.5, 4.5, 4.5, 4, 5, 6.5, 6.5, 8])
|
|
|
|
|
x = ma.array([0, 1, 5, 1, 2, 4, 3, 5, 1, 6, ])
|
|
|
|
|
assert_almost_equal(
|
|
|
|
|
mstats.rankdata(x), [1, 3, 8.5, 3, 5, 7, 6, 8.5, 3, 10])
|
|
|
|
|
x = ma.array([[0, 1, 1, 1, 2], [3, 4, 5, 5, 6, ]])
|
|
|
|
|
assert_almost_equal(
|
|
|
|
|
mstats.rankdata(x), [[1, 3, 3, 3, 5], [6, 7, 8.5, 8.5, 10]])
|
|
|
|
|
assert_almost_equal(
|
|
|
|
|
mstats.rankdata(x, axis=1), [[1, 3, 3, 3, 5], [1, 2, 3.5, 3.5, 5]])
|
|
|
|
|
assert_almost_equal(
|
|
|
|
|
mstats.rankdata(x, axis=0), [[1, 1, 1, 1, 1], [2, 2, 2, 2, 2, ]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestCorr(TestCase):
|
|
|
|
@ -148,72 +158,73 @@ class TestCorr(TestCase):
|
|
|
|
|
x1 = ma.array([-1.0, 0.0, 1.0])
|
|
|
|
|
y1 = ma.array([0, 0, 3])
|
|
|
|
|
r, p = mstats.pearsonr(x1, y1)
|
|
|
|
|
assert_almost_equal(r, np.sqrt(3)/2)
|
|
|
|
|
assert_almost_equal(p, 1.0/3)
|
|
|
|
|
assert_almost_equal(r, np.sqrt(3) / 2)
|
|
|
|
|
assert_almost_equal(p, 1.0 / 3)
|
|
|
|
|
|
|
|
|
|
# (x2, y2) have the same unmasked data as (x1, y1).
|
|
|
|
|
mask = [False, False, False, True]
|
|
|
|
|
x2 = ma.array([-1.0, 0.0, 1.0, 99.0], mask=mask)
|
|
|
|
|
y2 = ma.array([0, 0, 3, -1], mask=mask)
|
|
|
|
|
r, p = mstats.pearsonr(x2, y2)
|
|
|
|
|
assert_almost_equal(r, np.sqrt(3)/2)
|
|
|
|
|
assert_almost_equal(p, 1.0/3)
|
|
|
|
|
assert_almost_equal(r, np.sqrt(3) / 2)
|
|
|
|
|
assert_almost_equal(p, 1.0 / 3)
|
|
|
|
|
|
|
|
|
|
def test_spearmanr(self):
|
|
|
|
|
# Tests some computations of Spearman's rho
|
|
|
|
|
(x, y) = ([5.05,6.75,3.21,2.66],[1.65,2.64,2.64,6.95])
|
|
|
|
|
assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
|
|
|
|
|
(x, y) = ([5.05,6.75,3.21,2.66,np.nan],[1.65,2.64,2.64,6.95,np.nan])
|
|
|
|
|
(x, y) = ([5.05, 6.75, 3.21, 2.66], [1.65, 2.64, 2.64, 6.95])
|
|
|
|
|
assert_almost_equal(mstats.spearmanr(x, y)[0], -0.6324555)
|
|
|
|
|
(x, y) = ([5.05, 6.75, 3.21, 2.66, np.nan],
|
|
|
|
|
[1.65, 2.64, 2.64, 6.95, np.nan])
|
|
|
|
|
(x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
|
|
|
|
|
assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
|
|
|
|
|
assert_almost_equal(mstats.spearmanr(x, y)[0], -0.6324555)
|
|
|
|
|
|
|
|
|
|
x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
|
|
|
|
|
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
|
|
|
|
|
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
|
|
|
|
|
y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
|
|
|
|
|
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
|
|
|
|
|
assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
|
|
|
|
|
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
|
|
|
|
|
assert_almost_equal(mstats.spearmanr(x, y)[0], 0.6887299)
|
|
|
|
|
x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
|
|
|
|
|
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan]
|
|
|
|
|
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan]
|
|
|
|
|
y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
|
|
|
|
|
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan]
|
|
|
|
|
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan]
|
|
|
|
|
(x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
|
|
|
|
|
assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
|
|
|
|
|
assert_almost_equal(mstats.spearmanr(x, y)[0], 0.6887299)
|
|
|
|
|
|
|
|
|
|
def test_kendalltau(self):
|
|
|
|
|
# Tests some computations of Kendall's tau
|
|
|
|
|
x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66,np.nan])
|
|
|
|
|
x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66, np.nan])
|
|
|
|
|
y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan])
|
|
|
|
|
z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan])
|
|
|
|
|
assert_almost_equal(np.asarray(mstats.kendalltau(x,y)),
|
|
|
|
|
[+0.3333333,0.4969059])
|
|
|
|
|
assert_almost_equal(np.asarray(mstats.kendalltau(x,z)),
|
|
|
|
|
[-0.5477226,0.2785987])
|
|
|
|
|
assert_almost_equal(np.asarray(mstats.kendalltau(x, y)),
|
|
|
|
|
[+0.3333333, 0.4969059])
|
|
|
|
|
assert_almost_equal(np.asarray(mstats.kendalltau(x, z)),
|
|
|
|
|
[-0.5477226, 0.2785987])
|
|
|
|
|
#
|
|
|
|
|
x = ma.fix_invalid([0, 0, 0, 0,20,20, 0,60, 0,20,
|
|
|
|
|
10,10, 0,40, 0,20, 0, 0, 0, 0, 0, np.nan])
|
|
|
|
|
y = ma.fix_invalid([0,80,80,80,10,33,60, 0,67,27,
|
|
|
|
|
25,80,80,80,80,80,80, 0,10,45, np.nan, 0])
|
|
|
|
|
result = mstats.kendalltau(x,y)
|
|
|
|
|
x = ma.fix_invalid([0, 0, 0, 0, 20, 20, 0, 60, 0, 20,
|
|
|
|
|
10, 10, 0, 40, 0, 20, 0, 0, 0, 0, 0, np.nan])
|
|
|
|
|
y = ma.fix_invalid([0, 80, 80, 80, 10, 33, 60, 0, 67, 27,
|
|
|
|
|
25, 80, 80, 80, 80, 80, 80, 0, 10, 45, np.nan, 0])
|
|
|
|
|
result = mstats.kendalltau(x, y)
|
|
|
|
|
assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009])
|
|
|
|
|
|
|
|
|
|
def test_kendalltau_seasonal(self):
|
|
|
|
|
# Tests the seasonal Kendall tau.
|
|
|
|
|
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
|
|
|
|
|
x = [[nan, nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
|
|
|
|
|
[4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
|
|
|
|
|
[3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
|
|
|
|
|
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
|
|
|
|
|
[3, 2, 5, 6, 18, 4, 9, 1, 1, nan, 1, 1, nan],
|
|
|
|
|
[nan, 6, 11, 4, 17, nan, 6, 1, 1, 2, 5, 1, 1]]
|
|
|
|
|
x = ma.fix_invalid(x).T
|
|
|
|
|
output = mstats.kendalltau_seasonal(x)
|
|
|
|
|
assert_almost_equal(output['global p-value (indep)'], 0.008, 3)
|
|
|
|
|
assert_almost_equal(output['seasonal p-value'].round(2),
|
|
|
|
|
[0.18,0.53,0.20,0.04])
|
|
|
|
|
[0.18, 0.53, 0.20, 0.04])
|
|
|
|
|
|
|
|
|
|
def test_pointbiserial(self):
|
|
|
|
|
x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,
|
|
|
|
|
0,0,0,0,1,-1]
|
|
|
|
|
y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,
|
|
|
|
|
2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,
|
|
|
|
|
0.8,0.7,0.6,0.5,0.2,0.2,0.1,np.nan]
|
|
|
|
|
x = [1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0,
|
|
|
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, -1]
|
|
|
|
|
y = [14.8, 13.8, 12.4, 10.1, 7.1, 6.1, 5.8, 4.6, 4.3, 3.5, 3.3, 3.2, 3.0,
|
|
|
|
|
2.8, 2.8, 2.5, 2.4, 2.3, 2.1, 1.7, 1.7, 1.5, 1.3, 1.3, 1.2, 1.2, 1.1,
|
|
|
|
|
0.8, 0.7, 0.6, 0.5, 0.2, 0.2, 0.1, np.nan]
|
|
|
|
|
assert_almost_equal(mstats.pointbiserialr(x, y)[0], 0.36149, 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -221,68 +232,70 @@ class TestTrimming(TestCase):
|
|
|
|
|
|
|
|
|
|
def test_trim(self):
|
|
|
|
|
a = ma.arange(10)
|
|
|
|
|
assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9])
|
|
|
|
|
assert_equal(mstats.trim(a), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
|
|
|
|
a = ma.arange(10)
|
|
|
|
|
assert_equal(mstats.trim(a,(2,8)), [None,None,2,3,4,5,6,7,8,None])
|
|
|
|
|
assert_equal(
|
|
|
|
|
mstats.trim(a, (2, 8)), [None, None, 2, 3, 4, 5, 6, 7, 8, None])
|
|
|
|
|
a = ma.arange(10)
|
|
|
|
|
assert_equal(mstats.trim(a,limits=(2,8),inclusive=(False,False)),
|
|
|
|
|
[None,None,None,3,4,5,6,7,None,None])
|
|
|
|
|
assert_equal(mstats.trim(a, limits=(2, 8), inclusive=(False, False)),
|
|
|
|
|
[None, None, None, 3, 4, 5, 6, 7, None, None])
|
|
|
|
|
a = ma.arange(10)
|
|
|
|
|
assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True),
|
|
|
|
|
[None,1,2,3,4,5,6,7,None,None])
|
|
|
|
|
assert_equal(mstats.trim(a, limits=(0.1, 0.2), relative=True),
|
|
|
|
|
[None, 1, 2, 3, 4, 5, 6, 7, None, None])
|
|
|
|
|
|
|
|
|
|
a = ma.arange(12)
|
|
|
|
|
a[[0,-1]] = a[5] = masked
|
|
|
|
|
assert_equal(mstats.trim(a,(2,8)),
|
|
|
|
|
[None,None,2,3,4,None,6,7,8,None,None,None])
|
|
|
|
|
|
|
|
|
|
x = ma.arange(100).reshape(10,10)
|
|
|
|
|
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
|
|
|
|
|
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
|
|
|
|
|
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
|
|
|
|
|
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
|
|
|
|
|
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=-1)
|
|
|
|
|
assert_equal(trimx._mask.T.ravel(),[1]*10+[0]*70+[1]*20)
|
|
|
|
|
|
|
|
|
|
x = ma.arange(110).reshape(11,10)
|
|
|
|
|
a[[0, -1]] = a[5] = masked
|
|
|
|
|
assert_equal(mstats.trim(a, (2, 8)),
|
|
|
|
|
[None, None, 2, 3, 4, None, 6, 7, 8, None, None, None])
|
|
|
|
|
|
|
|
|
|
x = ma.arange(100).reshape(10, 10)
|
|
|
|
|
trimx = mstats.trim(x, (0.1, 0.2), relative=True, axis=None)
|
|
|
|
|
assert_equal(trimx._mask.ravel(), [1] * 10 + [0] * 70 + [1] * 20)
|
|
|
|
|
trimx = mstats.trim(x, (0.1, 0.2), relative=True, axis=0)
|
|
|
|
|
assert_equal(trimx._mask.ravel(), [1] * 10 + [0] * 70 + [1] * 20)
|
|
|
|
|
trimx = mstats.trim(x, (0.1, 0.2), relative=True, axis=-1)
|
|
|
|
|
assert_equal(trimx._mask.T.ravel(), [1] * 10 + [0] * 70 + [1] * 20)
|
|
|
|
|
|
|
|
|
|
x = ma.arange(110).reshape(11, 10)
|
|
|
|
|
x[1] = masked
|
|
|
|
|
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
|
|
|
|
|
assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
|
|
|
|
|
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
|
|
|
|
|
assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
|
|
|
|
|
trimx = mstats.trim(x.T,(0.1,0.2),relative=True,axis=-1)
|
|
|
|
|
assert_equal(trimx.T._mask.ravel(),[1]*20+[0]*70+[1]*20)
|
|
|
|
|
trimx = mstats.trim(x, (0.1, 0.2), relative=True, axis=None)
|
|
|
|
|
assert_equal(trimx._mask.ravel(), [1] * 20 + [0] * 70 + [1] * 20)
|
|
|
|
|
trimx = mstats.trim(x, (0.1, 0.2), relative=True, axis=0)
|
|
|
|
|
assert_equal(trimx._mask.ravel(), [1] * 20 + [0] * 70 + [1] * 20)
|
|
|
|
|
trimx = mstats.trim(x.T, (0.1, 0.2), relative=True, axis=-1)
|
|
|
|
|
assert_equal(trimx.T._mask.ravel(), [1] * 20 + [0] * 70 + [1] * 20)
|
|
|
|
|
|
|
|
|
|
def test_trim_old(self):
|
|
|
|
|
x = ma.arange(100)
|
|
|
|
|
assert_equal(mstats.trimboth(x).count(), 60)
|
|
|
|
|
assert_equal(mstats.trimtail(x,tail='r').count(), 80)
|
|
|
|
|
assert_equal(mstats.trimtail(x, tail='r').count(), 80)
|
|
|
|
|
x[50:70] = masked
|
|
|
|
|
trimx = mstats.trimboth(x)
|
|
|
|
|
assert_equal(trimx.count(), 48)
|
|
|
|
|
assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16)
|
|
|
|
|
assert_equal(
|
|
|
|
|
trimx._mask, [1] * 16 + [0] * 34 + [1] * 20 + [0] * 14 + [1] * 16)
|
|
|
|
|
x._mask = nomask
|
|
|
|
|
x.shape = (10,10)
|
|
|
|
|
x.shape = (10, 10)
|
|
|
|
|
assert_equal(mstats.trimboth(x).count(), 60)
|
|
|
|
|
assert_equal(mstats.trimtail(x).count(), 80)
|
|
|
|
|
|
|
|
|
|
def test_trimmedmean(self):
|
|
|
|
|
data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
|
|
|
|
|
296,299,306,376,428,515,666,1310,2611])
|
|
|
|
|
assert_almost_equal(mstats.trimmed_mean(data,0.1), 343, 0)
|
|
|
|
|
assert_almost_equal(mstats.trimmed_mean(data,(0.1,0.1)), 343, 0)
|
|
|
|
|
assert_almost_equal(mstats.trimmed_mean(data,(0.2,0.2)), 283, 0)
|
|
|
|
|
data = ma.array([77, 87, 88, 114, 151, 210, 219, 246, 253, 262,
|
|
|
|
|
296, 299, 306, 376, 428, 515, 666, 1310, 2611])
|
|
|
|
|
assert_almost_equal(mstats.trimmed_mean(data, 0.1), 343, 0)
|
|
|
|
|
assert_almost_equal(mstats.trimmed_mean(data, (0.1, 0.1)), 343, 0)
|
|
|
|
|
assert_almost_equal(mstats.trimmed_mean(data, (0.2, 0.2)), 283, 0)
|
|
|
|
|
|
|
|
|
|
def test_trimmed_stde(self):
|
|
|
|
|
data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
|
|
|
|
|
296,299,306,376,428,515,666,1310,2611])
|
|
|
|
|
assert_almost_equal(mstats.trimmed_stde(data,(0.2,0.2)), 56.13193, 5)
|
|
|
|
|
assert_almost_equal(mstats.trimmed_stde(data,0.2), 56.13193, 5)
|
|
|
|
|
data = ma.array([77, 87, 88, 114, 151, 210, 219, 246, 253, 262,
|
|
|
|
|
296, 299, 306, 376, 428, 515, 666, 1310, 2611])
|
|
|
|
|
assert_almost_equal(mstats.trimmed_stde(data, (0.2, 0.2)), 56.13193, 5)
|
|
|
|
|
assert_almost_equal(mstats.trimmed_stde(data, 0.2), 56.13193, 5)
|
|
|
|
|
|
|
|
|
|
def test_winsorization(self):
|
|
|
|
|
data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
|
|
|
|
|
296,299,306,376,428,515,666,1310,2611])
|
|
|
|
|
assert_almost_equal(mstats.winsorize(data,(0.2,0.2)).var(ddof=1),
|
|
|
|
|
data = ma.array([77, 87, 88, 114, 151, 210, 219, 246, 253, 262,
|
|
|
|
|
296, 299, 306, 376, 428, 515, 666, 1310, 2611])
|
|
|
|
|
assert_almost_equal(mstats.winsorize(data, (0.2, 0.2)).var(ddof=1),
|
|
|
|
|
21551.4, 1)
|
|
|
|
|
data[5] = masked
|
|
|
|
|
winsorized = mstats.winsorize(data)
|
|
|
|
@ -297,60 +310,60 @@ class TestMoments(TestCase):
|
|
|
|
|
# http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml
|
|
|
|
|
# http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml
|
|
|
|
|
# Note that both test cases came from here.
|
|
|
|
|
testcase = [1,2,3,4]
|
|
|
|
|
testcase = [1, 2, 3, 4]
|
|
|
|
|
testmathworks = ma.fix_invalid([1.165, 0.6268, 0.0751, 0.3516, -0.6965,
|
|
|
|
|
np.nan])
|
|
|
|
|
testcase_2d = ma.array(
|
|
|
|
|
np.array([[0.05245846, 0.50344235, 0.86589117, 0.36936353, 0.46961149],
|
|
|
|
|
[0.11574073, 0.31299969, 0.45925772, 0.72618805, 0.75194407],
|
|
|
|
|
[0.67696689, 0.91878127, 0.09769044, 0.04645137, 0.37615733],
|
|
|
|
|
[0.05903624, 0.29908861, 0.34088298, 0.66216337, 0.83160998],
|
|
|
|
|
[0.64619526, 0.94894632, 0.27855892, 0.0706151, 0.39962917]]),
|
|
|
|
|
mask=np.array([[True, False, False, True, False],
|
|
|
|
|
[True, True, True, False, True],
|
|
|
|
|
[False, False, False, False, False],
|
|
|
|
|
[True, True, True, True, True],
|
|
|
|
|
[False, False, True, False, False]], dtype=np.bool))
|
|
|
|
|
np.array([[0.05245846, 0.50344235, 0.86589117, 0.36936353, 0.46961149],
|
|
|
|
|
[0.11574073, 0.31299969, 0.45925772, 0.72618805, 0.75194407],
|
|
|
|
|
[0.67696689, 0.91878127, 0.09769044, 0.04645137, 0.37615733],
|
|
|
|
|
[0.05903624, 0.29908861, 0.34088298, 0.66216337, 0.83160998],
|
|
|
|
|
[0.64619526, 0.94894632, 0.27855892, 0.0706151, 0.39962917]]),
|
|
|
|
|
mask=np.array([[True, False, False, True, False],
|
|
|
|
|
[True, True, True, False, True],
|
|
|
|
|
[False, False, False, False, False],
|
|
|
|
|
[True, True, True, True, True],
|
|
|
|
|
[False, False, True, False, False]], dtype=np.bool))
|
|
|
|
|
|
|
|
|
|
def test_moment(self):
|
|
|
|
|
y = mstats.moment(self.testcase,1)
|
|
|
|
|
assert_almost_equal(y,0.0,10)
|
|
|
|
|
y = mstats.moment(self.testcase,2)
|
|
|
|
|
assert_almost_equal(y,1.25)
|
|
|
|
|
y = mstats.moment(self.testcase,3)
|
|
|
|
|
assert_almost_equal(y,0.0)
|
|
|
|
|
y = mstats.moment(self.testcase,4)
|
|
|
|
|
assert_almost_equal(y,2.5625)
|
|
|
|
|
y = mstats.moment(self.testcase, 1)
|
|
|
|
|
assert_almost_equal(y, 0.0, 10)
|
|
|
|
|
y = mstats.moment(self.testcase, 2)
|
|
|
|
|
assert_almost_equal(y, 1.25)
|
|
|
|
|
y = mstats.moment(self.testcase, 3)
|
|
|
|
|
assert_almost_equal(y, 0.0)
|
|
|
|
|
y = mstats.moment(self.testcase, 4)
|
|
|
|
|
assert_almost_equal(y, 2.5625)
|
|
|
|
|
|
|
|
|
|
def test_variation(self):
|
|
|
|
|
y = mstats.variation(self.testcase)
|
|
|
|
|
assert_almost_equal(y,0.44721359549996, 10)
|
|
|
|
|
assert_almost_equal(y, 0.44721359549996, 10)
|
|
|
|
|
|
|
|
|
|
def test_skewness(self):
|
|
|
|
|
y = mstats.skew(self.testmathworks)
|
|
|
|
|
assert_almost_equal(y,-0.29322304336607,10)
|
|
|
|
|
y = mstats.skew(self.testmathworks,bias=0)
|
|
|
|
|
assert_almost_equal(y,-0.437111105023940,10)
|
|
|
|
|
assert_almost_equal(y, -0.29322304336607, 10)
|
|
|
|
|
y = mstats.skew(self.testmathworks, bias=0)
|
|
|
|
|
assert_almost_equal(y, -0.437111105023940, 10)
|
|
|
|
|
y = mstats.skew(self.testcase)
|
|
|
|
|
assert_almost_equal(y,0.0,10)
|
|
|
|
|
assert_almost_equal(y, 0.0, 10)
|
|
|
|
|
|
|
|
|
|
def test_kurtosis(self):
|
|
|
|
|
# Set flags for axis = 0 and fisher=0 (Pearson's definition of kurtosis
|
|
|
|
|
# for compatibility with Matlab)
|
|
|
|
|
y = mstats.kurtosis(self.testmathworks,0,fisher=0,bias=1)
|
|
|
|
|
assert_almost_equal(y, 2.1658856802973,10)
|
|
|
|
|
y = mstats.kurtosis(self.testmathworks, 0, fisher=0, bias=1)
|
|
|
|
|
assert_almost_equal(y, 2.1658856802973, 10)
|
|
|
|
|
# Note that MATLAB has confusing docs for the following case
|
|
|
|
|
# kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
|
|
|
|
|
# kurtosis(x) gives a biased estimate of Fisher's skewness (Pearson-3)
|
|
|
|
|
# The MATLAB docs imply that both should give Fisher's
|
|
|
|
|
y = mstats.kurtosis(self.testmathworks,fisher=0, bias=0)
|
|
|
|
|
assert_almost_equal(y, 3.663542721189047,10)
|
|
|
|
|
y = mstats.kurtosis(self.testcase,0,0)
|
|
|
|
|
assert_almost_equal(y,1.64)
|
|
|
|
|
y = mstats.kurtosis(self.testmathworks, fisher=0, bias=0)
|
|
|
|
|
assert_almost_equal(y, 3.663542721189047, 10)
|
|
|
|
|
y = mstats.kurtosis(self.testcase, 0, 0)
|
|
|
|
|
assert_almost_equal(y, 1.64)
|
|
|
|
|
|
|
|
|
|
# test that kurtosis works on multidimensional masked arrays
|
|
|
|
|
correct_2d = ma.array(np.array([-1.5, -3., -1.47247052385, 0.,
|
|
|
|
|
-1.26979517952]),
|
|
|
|
|
- 1.26979517952]),
|
|
|
|
|
mask=np.array([False, False, False, True,
|
|
|
|
|
False], dtype=np.bool))
|
|
|
|
|
assert_array_almost_equal(mstats.kurtosis(self.testcase_2d, 1),
|
|
|
|
@ -373,34 +386,40 @@ class TestMoments(TestCase):
|
|
|
|
|
stats.kurtosis(self.testcase_2d[2, :]))
|
|
|
|
|
|
|
|
|
|
def test_mode(self):
|
|
|
|
|
a1 = [0,0,0,1,1,1,2,3,3,3,3,4,5,6,7]
|
|
|
|
|
a2 = np.reshape(a1, (3,5))
|
|
|
|
|
a3 = np.array([1,2,3,4,5,6])
|
|
|
|
|
a4 = np.reshape(a3, (3,2))
|
|
|
|
|
a1 = [0, 0, 0, 1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 6, 7]
|
|
|
|
|
a2 = np.reshape(a1, (3, 5))
|
|
|
|
|
a3 = np.array([1, 2, 3, 4, 5, 6])
|
|
|
|
|
a4 = np.reshape(a3, (3, 2))
|
|
|
|
|
ma1 = ma.masked_where(ma.array(a1) > 2, a1)
|
|
|
|
|
ma2 = ma.masked_where(a2 > 2, a2)
|
|
|
|
|
ma3 = ma.masked_where(a3 < 2, a3)
|
|
|
|
|
ma4 = ma.masked_where(ma.array(a4) < 2, a4)
|
|
|
|
|
assert_equal(mstats.mode(a1, axis=None), (3,4))
|
|
|
|
|
assert_equal(mstats.mode(a1, axis=0), (3,4))
|
|
|
|
|
assert_equal(mstats.mode(ma1, axis=None), (0,3))
|
|
|
|
|
assert_equal(mstats.mode(a2, axis=None), (3,4))
|
|
|
|
|
assert_equal(mstats.mode(ma2, axis=None), (0,3))
|
|
|
|
|
assert_equal(mstats.mode(a3, axis=None), (1,1))
|
|
|
|
|
assert_equal(mstats.mode(ma3, axis=None), (2,1))
|
|
|
|
|
assert_equal(mstats.mode(a2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]]))
|
|
|
|
|
assert_equal(mstats.mode(ma2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]]))
|
|
|
|
|
assert_equal(mstats.mode(a2, axis=-1), ([[0],[3],[3]], [[3],[3],[1]]))
|
|
|
|
|
assert_equal(mstats.mode(ma2, axis=-1), ([[0],[1],[0]], [[3],[1],[0]]))
|
|
|
|
|
assert_equal(mstats.mode(ma4, axis=0), ([[3,2]], [[1,1]]))
|
|
|
|
|
assert_equal(mstats.mode(ma4, axis=-1), ([[2],[3],[5]], [[1],[1],[1]]))
|
|
|
|
|
assert_equal(mstats.mode(a1, axis=None), (3, 4))
|
|
|
|
|
assert_equal(mstats.mode(a1, axis=0), (3, 4))
|
|
|
|
|
assert_equal(mstats.mode(ma1, axis=None), (0, 3))
|
|
|
|
|
assert_equal(mstats.mode(a2, axis=None), (3, 4))
|
|
|
|
|
assert_equal(mstats.mode(ma2, axis=None), (0, 3))
|
|
|
|
|
assert_equal(mstats.mode(a3, axis=None), (1, 1))
|
|
|
|
|
assert_equal(mstats.mode(ma3, axis=None), (2, 1))
|
|
|
|
|
assert_equal(
|
|
|
|
|
mstats.mode(a2, axis=0), ([[0, 0, 0, 1, 1]], [[1, 1, 1, 1, 1]]))
|
|
|
|
|
assert_equal(
|
|
|
|
|
mstats.mode(ma2, axis=0), ([[0, 0, 0, 1, 1]], [[1, 1, 1, 1, 1]]))
|
|
|
|
|
assert_equal(
|
|
|
|
|
mstats.mode(a2, axis=-1), ([[0], [3], [3]], [[3], [3], [1]]))
|
|
|
|
|
assert_equal(
|
|
|
|
|
mstats.mode(ma2, axis=-1), ([[0], [1], [0]], [[3], [1], [0]]))
|
|
|
|
|
assert_equal(mstats.mode(ma4, axis=0), ([[3, 2]], [[1, 1]]))
|
|
|
|
|
assert_equal(
|
|
|
|
|
mstats.mode(ma4, axis=-1), ([[2], [3], [5]], [[1], [1], [1]]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestPercentile(TestCase):
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.a1 = [3,4,5,10,-3,-5,6]
|
|
|
|
|
self.a2 = [3,-6,-2,8,7,4,2,1]
|
|
|
|
|
self.a3 = [3.,4,5,10,-3,-5,-6,7.0]
|
|
|
|
|
self.a1 = [3, 4, 5, 10, -3, -5, 6]
|
|
|
|
|
self.a2 = [3, -6, -2, 8, 7, 4, 2, 1]
|
|
|
|
|
self.a3 = [3., 4, 5, 10, -3, -5, -6, 7.0]
|
|
|
|
|
|
|
|
|
|
def test_percentile(self):
|
|
|
|
|
x = np.arange(8) * 0.5
|
|
|
|
@ -414,27 +433,28 @@ class TestPercentile(TestCase):
|
|
|
|
|
[4, 4, 3],
|
|
|
|
|
[1, 1, 1],
|
|
|
|
|
[1, 1, 1]])
|
|
|
|
|
assert_equal(mstats.scoreatpercentile(x,50), [1,1,1])
|
|
|
|
|
assert_equal(mstats.scoreatpercentile(x, 50), [1, 1, 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestVariability(TestCase):
|
|
|
|
|
|
|
|
|
|
""" Comparison numbers are found using R v.1.5.1
|
|
|
|
|
note that length(testcase) = 4
|
|
|
|
|
"""
|
|
|
|
|
testcase = ma.fix_invalid([1,2,3,4,np.nan])
|
|
|
|
|
testcase = ma.fix_invalid([1, 2, 3, 4, np.nan])
|
|
|
|
|
|
|
|
|
|
def test_signaltonoise(self):
|
|
|
|
|
# This is not in R, so used:
|
|
|
|
|
# mean(testcase, axis=0) / (sqrt(var(testcase)*3/4))
|
|
|
|
|
y = mstats.signaltonoise(self.testcase)
|
|
|
|
|
assert_almost_equal(y,2.236067977)
|
|
|
|
|
assert_almost_equal(y, 2.236067977)
|
|
|
|
|
|
|
|
|
|
def test_sem(self):
|
|
|
|
|
# This is not in R, so used: sqrt(var(testcase)*3/4) / sqrt(3)
|
|
|
|
|
y = mstats.sem(self.testcase)
|
|
|
|
|
assert_almost_equal(y, 0.6454972244)
|
|
|
|
|
n = self.testcase.count()
|
|
|
|
|
assert_allclose(mstats.sem(self.testcase, ddof=0) * np.sqrt(n/(n-2)),
|
|
|
|
|
assert_allclose(mstats.sem(self.testcase, ddof=0) * np.sqrt(n / (n - 2)),
|
|
|
|
|
mstats.sem(self.testcase, ddof=2))
|
|
|
|
|
|
|
|
|
|
def test_zmap(self):
|
|
|
|
@ -458,41 +478,41 @@ class TestVariability(TestCase):
|
|
|
|
|
class TestMisc(TestCase):
|
|
|
|
|
|
|
|
|
|
def test_obrientransform(self):
|
|
|
|
|
args = [[5]*5+[6]*11+[7]*9+[8]*3+[9]*2+[10]*2,
|
|
|
|
|
[6]+[7]*2+[8]*4+[9]*9+[10]*16]
|
|
|
|
|
result = [5*[3.1828]+11*[0.5591]+9*[0.0344]+3*[1.6086]+2*[5.2817]+2*[11.0538],
|
|
|
|
|
[10.4352]+2*[4.8599]+4*[1.3836]+9*[0.0061]+16*[0.7277]]
|
|
|
|
|
assert_almost_equal(np.round(mstats.obrientransform(*args).T,4),
|
|
|
|
|
result,4)
|
|
|
|
|
args = [[5] * 5 + [6] * 11 + [7] * 9 + [8] * 3 + [9] * 2 + [10] * 2,
|
|
|
|
|
[6] + [7] * 2 + [8] * 4 + [9] * 9 + [10] * 16]
|
|
|
|
|
result = [5 * [3.1828] + 11 * [0.5591] + 9 * [0.0344] + 3 * [1.6086] + 2 * [5.2817] + 2 * [11.0538],
|
|
|
|
|
[10.4352] + 2 * [4.8599] + 4 * [1.3836] + 9 * [0.0061] + 16 * [0.7277]]
|
|
|
|
|
assert_almost_equal(np.round(mstats.obrientransform(*args).T, 4),
|
|
|
|
|
result, 4)
|
|
|
|
|
|
|
|
|
|
def test_kstwosamp(self):
|
|
|
|
|
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
|
|
|
|
|
x = [[nan, nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
|
|
|
|
|
[4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
|
|
|
|
|
[3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
|
|
|
|
|
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
|
|
|
|
|
[3, 2, 5, 6, 18, 4, 9, 1, 1, nan, 1, 1, nan],
|
|
|
|
|
[nan, 6, 11, 4, 17, nan, 6, 1, 1, 2, 5, 1, 1]]
|
|
|
|
|
x = ma.fix_invalid(x).T
|
|
|
|
|
(winter,spring,summer,fall) = x.T
|
|
|
|
|
(winter, spring, summer, fall) = x.T
|
|
|
|
|
|
|
|
|
|
assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring),4),
|
|
|
|
|
(0.1818,0.9892))
|
|
|
|
|
assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'g'),4),
|
|
|
|
|
(0.1469,0.7734))
|
|
|
|
|
assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'l'),4),
|
|
|
|
|
(0.1818,0.6744))
|
|
|
|
|
assert_almost_equal(np.round(mstats.ks_twosamp(winter, spring), 4),
|
|
|
|
|
(0.1818, 0.9892))
|
|
|
|
|
assert_almost_equal(np.round(mstats.ks_twosamp(winter, spring, 'g'), 4),
|
|
|
|
|
(0.1469, 0.7734))
|
|
|
|
|
assert_almost_equal(np.round(mstats.ks_twosamp(winter, spring, 'l'), 4),
|
|
|
|
|
(0.1818, 0.6744))
|
|
|
|
|
|
|
|
|
|
def test_friedmanchisq(self):
|
|
|
|
|
# No missing values
|
|
|
|
|
args = ([9.0,9.5,5.0,7.5,9.5,7.5,8.0,7.0,8.5,6.0],
|
|
|
|
|
[7.0,6.5,7.0,7.5,5.0,8.0,6.0,6.5,7.0,7.0],
|
|
|
|
|
[6.0,8.0,4.0,6.0,7.0,6.5,6.0,4.0,6.5,3.0])
|
|
|
|
|
args = ([9.0, 9.5, 5.0, 7.5, 9.5, 7.5, 8.0, 7.0, 8.5, 6.0],
|
|
|
|
|
[7.0, 6.5, 7.0, 7.5, 5.0, 8.0, 6.0, 6.5, 7.0, 7.0],
|
|
|
|
|
[6.0, 8.0, 4.0, 6.0, 7.0, 6.5, 6.0, 4.0, 6.5, 3.0])
|
|
|
|
|
result = mstats.friedmanchisquare(*args)
|
|
|
|
|
assert_almost_equal(result[0], 10.4737, 4)
|
|
|
|
|
assert_almost_equal(result[1], 0.005317, 6)
|
|
|
|
|
# Missing values
|
|
|
|
|
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
|
|
|
|
|
x = [[nan, nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
|
|
|
|
|
[4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
|
|
|
|
|
[3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
|
|
|
|
|
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
|
|
|
|
|
[3, 2, 5, 6, 18, 4, 9, 1, 1, nan, 1, 1, nan],
|
|
|
|
|
[nan, 6, 11, 4, 17, nan, 6, 1, 1, 2, 5, 1, 1]]
|
|
|
|
|
x = ma.fix_invalid(x)
|
|
|
|
|
result = mstats.friedmanchisquare(*x)
|
|
|
|
|
assert_almost_equal(result[0], 2.0156, 4)
|
|
|
|
@ -519,7 +539,7 @@ def test_plotting_positions():
|
|
|
|
|
class TestNormalitytests():
|
|
|
|
|
|
|
|
|
|
def test_vs_nonmasked(self):
|
|
|
|
|
x = np.array((-2,-1,0,1,2,3)*4)**2
|
|
|
|
|
x = np.array((-2, -1, 0, 1, 2, 3) * 4) ** 2
|
|
|
|
|
assert_array_almost_equal(mstats.normaltest(x), stats.normaltest(x))
|
|
|
|
|
assert_array_almost_equal(mstats.skewtest(x), stats.skewtest(x))
|
|
|
|
|
assert_array_almost_equal(mstats.kurtosistest(x),
|
|
|
|
@ -534,7 +554,7 @@ class TestNormalitytests():
|
|
|
|
|
|
|
|
|
|
def test_axis_None(self):
|
|
|
|
|
# Test axis=None (equal to axis=0 for 1-D input)
|
|
|
|
|
x = np.array((-2,-1,0,1,2,3)*4)**2
|
|
|
|
|
x = np.array((-2, -1, 0, 1, 2, 3) * 4) ** 2
|
|
|
|
|
assert_allclose(mstats.normaltest(x, axis=None), mstats.normaltest(x))
|
|
|
|
|
assert_allclose(mstats.skewtest(x, axis=None), mstats.skewtest(x))
|
|
|
|
|
assert_allclose(mstats.kurtosistest(x, axis=None),
|
|
|
|
@ -542,7 +562,7 @@ class TestNormalitytests():
|
|
|
|
|
|
|
|
|
|
def test_maskedarray_input(self):
|
|
|
|
|
# Add some masked values, test result doesn't change
|
|
|
|
|
x = np.array((-2,-1,0,1,2,3)*4)**2
|
|
|
|
|
x = np.array((-2, -1, 0, 1, 2, 3) * 4) ** 2
|
|
|
|
|
xm = np.ma.array(np.r_[np.inf, x, 10],
|
|
|
|
|
mask=np.r_[True, [False] * x.size, True])
|
|
|
|
|
assert_allclose(mstats.normaltest(xm), stats.normaltest(x))
|
|
|
|
@ -550,7 +570,7 @@ class TestNormalitytests():
|
|
|
|
|
assert_allclose(mstats.kurtosistest(xm), stats.kurtosistest(x))
|
|
|
|
|
|
|
|
|
|
def test_nd_input(self):
|
|
|
|
|
x = np.array((-2,-1,0,1,2,3)*4)**2
|
|
|
|
|
x = np.array((-2, -1, 0, 1, 2, 3) * 4) ** 2
|
|
|
|
|
x_2d = np.vstack([x] * 2).T
|
|
|
|
|
for func in [mstats.normaltest, mstats.skewtest, mstats.kurtosistest]:
|
|
|
|
|
res_1d = func(x)
|
|
|
|
@ -559,7 +579,7 @@ class TestNormalitytests():
|
|
|
|
|
assert_allclose(res_2d[1], [res_1d[1]] * 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#TODO: for all ttest functions, add tests with masked array inputs
|
|
|
|
|
# TODO: for all ttest functions, add tests with masked array inputs
|
|
|
|
|
class TestTtest_rel():
|
|
|
|
|
|
|
|
|
|
def test_vs_nonmasked(self):
|
|
|
|
|