|
|
|
@ -47,7 +47,7 @@ from .core import SpecData1D, SpecData2D
|
|
|
|
|
|
|
|
|
|
__all__ = ['Bretschneider', 'Jonswap', 'Torsethaugen', 'Wallop', 'McCormick',
|
|
|
|
|
'OchiHubble', 'Tmaspec', 'jonswap_peakfact', 'jonswap_seastate',
|
|
|
|
|
'spreading', 'w2k', 'k2w', 'phi1']
|
|
|
|
|
'Spreading', 'w2k', 'k2w', 'phi1']
|
|
|
|
|
|
|
|
|
|
_EPS = finfo(float).eps
|
|
|
|
|
|
|
|
|
@ -1034,7 +1034,7 @@ class Torsethaugen(ModelSpectrum):
|
|
|
|
|
|
|
|
|
|
print('Hm0 = %g' % Hm0)
|
|
|
|
|
print('Ns, Ms = %g, %g Nw, Mw = %g, %g' % (Ns, Ms, Nw, Mw))
|
|
|
|
|
print('gammas = %g gammaw = ' % (gammas, gammaw))
|
|
|
|
|
print('gammas = %g gammaw = %g' % (gammas, gammaw))
|
|
|
|
|
print('Rps = %g Rpw = %g' % (Rps, Rpw))
|
|
|
|
|
print('Hps = %g Hpw = %g' % (Hps, Hpw))
|
|
|
|
|
print('Tps = %g Tpw = %g' % (Tps, Tpw))
|
|
|
|
@ -1600,7 +1600,7 @@ class Spreading(object):
|
|
|
|
|
phi0 : real scalar
|
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
|
'''
|
|
|
|
|
S, TH, phi0, unused_Nt = self.chk_input(theta, w, wc)
|
|
|
|
|
S, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
|
|
|
|
|
|
gammaln = sp.gammaln
|
|
|
|
|
|
|
|
|
@ -1630,7 +1630,7 @@ class Spreading(object):
|
|
|
|
|
phi0 : real scalar
|
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
|
'''
|
|
|
|
|
[X, TH, phi0, unused_Nt] = self.chk_input(theta, w, wc)
|
|
|
|
|
X, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
|
|
|
|
|
|
D = (1 - X ** 2.) / (1. - (2. * cos(TH) - X) * X) / (2. * pi)
|
|
|
|
|
return D, phi0
|
|
|
|
@ -1659,7 +1659,7 @@ class Spreading(object):
|
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
[par, TH, phi0, Nt] = self.chk_input(theta, w, wc)
|
|
|
|
|
par, TH, phi0, Nt = self.chk_input(theta, w, wc)
|
|
|
|
|
|
|
|
|
|
D1 = par ** 2. / 2.
|
|
|
|
|
|
|
|
|
@ -1700,7 +1700,7 @@ class Spreading(object):
|
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
[B, TH, phi0, unused_Nt] = self.chk_input(theta, w, wc)
|
|
|
|
|
B, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
|
NB = tanh(pi * B) # % Normalization factor.
|
|
|
|
|
NB = where(NB == 0, 1.0, NB) # Avoid division by zero
|
|
|
|
|
|
|
|
|
@ -1730,7 +1730,7 @@ class Spreading(object):
|
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
[K, TH, phi0, unused_Nt] = self.chk_input(theta, w, wc)
|
|
|
|
|
K, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
|
|
|
|
|
|
D = exp(K * (cos(TH) - 1.)) / (2 * pi * sp.ive(0, K))
|
|
|
|
|
return D, phi0
|
|
|
|
@ -1758,7 +1758,7 @@ class Spreading(object):
|
|
|
|
|
Parameter defining the actual principal direction of D.
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
[A, TH, phi0, unused_Nt] = self.chk_input(theta, w, wc)
|
|
|
|
|
A, TH, phi0 = self.chk_input(theta, w, wc)[:3]
|
|
|
|
|
D = ((-A <= TH) & (TH <= A)) / (2. * A)
|
|
|
|
|
return D, phi0
|
|
|
|
|
|
|
|
|
@ -1794,7 +1794,8 @@ class Spreading(object):
|
|
|
|
|
fourierfun = self._fourierdispatch.get(self.type[0])
|
|
|
|
|
return fourierfun(r1)
|
|
|
|
|
|
|
|
|
|
def fourier2x(self, r1):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def fourier2x(r1):
|
|
|
|
|
''' Returns the solution of r1 = x.
|
|
|
|
|
'''
|
|
|
|
|
X = r1
|
|
|
|
@ -1802,7 +1803,8 @@ class Spreading(object):
|
|
|
|
|
raise ValueError('POISSON spreading: X value must be less than 1')
|
|
|
|
|
return X
|
|
|
|
|
|
|
|
|
|
def fourier2a(self, r1):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def fourier2a(r1):
|
|
|
|
|
''' Returns the solution of R1 = sin(A)/A.
|
|
|
|
|
'''
|
|
|
|
|
A0 = flipud(linspace(0, pi + 0.1, 1025))
|
|
|
|
@ -1833,7 +1835,8 @@ class Spreading(object):
|
|
|
|
|
warnings.warn('Newton raphson method did not converge.')
|
|
|
|
|
return A.clip(min=1e-16) # Avoid division by zero
|
|
|
|
|
|
|
|
|
|
def fourier2k(self, r1):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def fourier2k(r1):
|
|
|
|
|
'''
|
|
|
|
|
Returns the solution of R1 = besseli(1,K)/besseli(0,K),
|
|
|
|
|
'''
|
|
|
|
@ -1967,12 +1970,14 @@ class Spreading(object):
|
|
|
|
|
s_par = s_par[newaxis, :]
|
|
|
|
|
return s_par
|
|
|
|
|
|
|
|
|
|
def _donelan(self, wn):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _donelan(wn):
|
|
|
|
|
''' High frequency decay of B of sech2 paramater
|
|
|
|
|
'''
|
|
|
|
|
return 10.0 ** (-0.4 + 0.8393 * exp(-0.567 * log(wn ** 2)))
|
|
|
|
|
|
|
|
|
|
def _r1ofsech2(self, B):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _r1ofsech2(B):
|
|
|
|
|
''' R1OFSECH2 Computes R1 = pi./(2*B.*sinh(pi./(2*B)))
|
|
|
|
|
'''
|
|
|
|
|
realmax = finfo(float).max
|
|
|
|
@ -2111,7 +2116,7 @@ def _test_spreading():
|
|
|
|
|
|
|
|
|
|
D2 = Spreading('cos2s', theta0=lambda w: w * plb.pi / 6.0)
|
|
|
|
|
d1 = D2(theta, w)[0]
|
|
|
|
|
_t = plb.contour(d1.squeeze())
|
|
|
|
|
plb.contour(d1.squeeze())
|
|
|
|
|
|
|
|
|
|
pi = plb.pi
|
|
|
|
|
D = Spreading('wrap_norm', s_a=10.0)
|
|
|
|
|