Added rainflow_example.py
parent
10f942aea7
commit
b3ec862cbf
@ -0,0 +1,178 @@
|
|||||||
|
#from tutor_init import *
|
||||||
|
import numpy as np
|
||||||
|
import logging
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import itertools
|
||||||
|
# import sys
|
||||||
|
import itertools
|
||||||
|
log = logging.getLogger(__name__)
|
||||||
|
log.setLevel(logging.DEBUG)
|
||||||
|
|
||||||
|
MARKERS = ('o', 'x', '+', '.', '<', '>', '^', 'v')
|
||||||
|
|
||||||
|
|
||||||
|
def set_windows_title(title='', log=None):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def plot_varying_symbols(x, y, color='red', size=5):
|
||||||
|
"""
|
||||||
|
Create a plot with varying symbols
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy array with x data of the points
|
||||||
|
y : numpy array with y data of the points
|
||||||
|
color : color of the symbols
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
|
||||||
|
"""
|
||||||
|
markers = itertools.cycle(MARKERS)
|
||||||
|
for q, p in zip(x, y):
|
||||||
|
plt.plot(q, p, marker=markers.next(), linestyle='', color=color, markersize=size)
|
||||||
|
|
||||||
|
def damage_vs_S(S, beta, K):
|
||||||
|
"""
|
||||||
|
calculate the damage 1/N for a given stress S
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
S : Stress [Pa]
|
||||||
|
beta : coefficient, typically 3
|
||||||
|
K : constant
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
|
||||||
|
"""
|
||||||
|
return K * np.power(S, beta)
|
||||||
|
|
||||||
|
# Section 4.3.1 Crossing intensity
|
||||||
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
import wafo.data as wd
|
||||||
|
import wafo.objects as wo
|
||||||
|
import wafo.misc as wm
|
||||||
|
|
||||||
|
xx_sea = wd.sea()
|
||||||
|
|
||||||
|
Tlength = xx_sea[-1, 0] - xx_sea[0, 0]
|
||||||
|
beta = 3
|
||||||
|
K1 = 6.5e-31
|
||||||
|
Np = 200
|
||||||
|
Tp = Tlength/Np
|
||||||
|
A = 100e6
|
||||||
|
log.info("setting sin wave with Tp={} and T={}".format(Tp, Tlength))
|
||||||
|
Nc = 1.0 / damage_vs_S(A, beta, K1)
|
||||||
|
damage = float(Np)/float(Nc)
|
||||||
|
log.info("budget at S={} N={}: damage = {} ".format(A, Nc, damage))
|
||||||
|
#xx_sea[:, 1] = A * np.cos(2 * np.pi * xx_sea[:, 0]/Tp)
|
||||||
|
xx_sea[:, 1] *= 500e6
|
||||||
|
|
||||||
|
log.info("loaded sea time series {}".format(xx_sea.shape))
|
||||||
|
ts = wo.mat2timeseries(xx_sea)
|
||||||
|
|
||||||
|
tp = ts.turning_points()
|
||||||
|
mM = tp.cycle_pairs(kind='min2max')
|
||||||
|
Mm = tp.cycle_pairs(kind='max2min')
|
||||||
|
lc = mM.level_crossings(intensity=True)
|
||||||
|
T_sea = ts.args[-1]-ts.args[0]
|
||||||
|
|
||||||
|
#for i in dir(mM):
|
||||||
|
# print(i)
|
||||||
|
|
||||||
|
|
||||||
|
ts1 = wo.mat2timeseries(xx_sea[:,:])
|
||||||
|
tp1 = ts1.turning_points()
|
||||||
|
sig_tp = ts.turning_points(h=0, wavetype='astm')
|
||||||
|
try:
|
||||||
|
sig_cp = sig_tp.cycle_astm()
|
||||||
|
log.info("Successfully used cycle_astm")
|
||||||
|
except AttributeError:
|
||||||
|
log.warning("Could use cycle_astm")
|
||||||
|
sig_cp = None
|
||||||
|
tp1 = ts1.turning_points()
|
||||||
|
tp2 = ts1.turning_points(wavetype='Mw')
|
||||||
|
mM1 = tp1.cycle_pairs(kind='min2max')
|
||||||
|
Mm1 = tp1.cycle_pairs(kind='max2min')
|
||||||
|
|
||||||
|
tp_rfc = tp1.rainflow_filter(h=100e6)
|
||||||
|
mM_rfc = tp_rfc.cycle_pairs()
|
||||||
|
try:
|
||||||
|
mM_rfc_a = tp1.cycle_astm()
|
||||||
|
except AttributeError:
|
||||||
|
mM_rfc_a = None
|
||||||
|
tc1 = ts1.trough_crest()
|
||||||
|
min_to_max = True
|
||||||
|
rfc_plot = True
|
||||||
|
if min_to_max:
|
||||||
|
m1, M1 = mM1.get_minima_and_maxima()
|
||||||
|
i_min_start = 0
|
||||||
|
else:
|
||||||
|
m1, M1 = Mm1.get_minima_and_maxima()
|
||||||
|
i_min_start = 2
|
||||||
|
|
||||||
|
m_rfc, M_rfc = mM_rfc.get_minima_and_maxima()
|
||||||
|
#m_rfc_a, M_rfc_a = mM_rfc_a.get_minima_and_maxima()
|
||||||
|
ts1.plot('b-')
|
||||||
|
if rfc_plot:
|
||||||
|
plot_varying_symbols(tp_rfc.args[0::2], m_rfc, color='red', size=10)
|
||||||
|
plot_varying_symbols(tp_rfc.args[1::2], M_rfc, color='green', size=10)
|
||||||
|
else:
|
||||||
|
plot_varying_symbols(tp.args[i_min_start::2], m1, color='red', size=10)
|
||||||
|
plot_varying_symbols(tp.args[1::2], M1, color='green', size=10)
|
||||||
|
|
||||||
|
set_windows_title("Sea time series", log)
|
||||||
|
|
||||||
|
plt.figure()
|
||||||
|
plt.subplot(122),
|
||||||
|
mM.plot()
|
||||||
|
plt.title('min-max cycle pairs')
|
||||||
|
plt.subplot(121),
|
||||||
|
mM_rfc.plot()
|
||||||
|
|
||||||
|
title = 'Rainflow filtered cycles'
|
||||||
|
plt.title(title)
|
||||||
|
set_windows_title(title)
|
||||||
|
|
||||||
|
|
||||||
|
# Min-max and rainflow cycle distributions
|
||||||
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
# import wafo.misc as wm
|
||||||
|
ampmM_sea = mM.amplitudes()
|
||||||
|
ampRFC_sea = mM_rfc.amplitudes()
|
||||||
|
plt.figure()
|
||||||
|
title = "s_n_curve"
|
||||||
|
set_windows_title(title)
|
||||||
|
S = np.linspace(1e6,1000e6)
|
||||||
|
plt.loglog(S, damage_vs_S(S, beta, K1))
|
||||||
|
plt.figure()
|
||||||
|
plt.subplot(121)
|
||||||
|
stress_range = (1,1e9)
|
||||||
|
n_bins = 100
|
||||||
|
wm.plot_histgrm(ampmM_sea, bins=n_bins, range=stress_range)
|
||||||
|
plt.xlim(stress_range)
|
||||||
|
ylim = plt.gca().get_ylim()
|
||||||
|
plt.title('min-max amplitude distribution')
|
||||||
|
plt.subplot(122)
|
||||||
|
if sig_cp is not None:
|
||||||
|
wm.plot_histgrm(sig_cp[:, 0],bins=n_bins, range=stress_range)
|
||||||
|
plt.gca().set_ylim(ylim)
|
||||||
|
title = 'Rainflow amplitude distribution'
|
||||||
|
plt.title(title)
|
||||||
|
plt.semilogy
|
||||||
|
set_windows_title(title)
|
||||||
|
|
||||||
|
hist, bin_edges = np.histogram(sig_cp[:, 0], bins=n_bins, range=stress_range)
|
||||||
|
|
||||||
|
plt.figure()
|
||||||
|
title = "my_bins"
|
||||||
|
plt.title(title)
|
||||||
|
plt.title(title)
|
||||||
|
set_windows_title(title)
|
||||||
|
plt.semilogy
|
||||||
|
plt.bar(bin_edges[:-1], hist, width=stress_range[1]/n_bins)
|
||||||
|
|
||||||
|
print("damage min/max : {}".format(mM_rfc.damage([beta], K1)))
|
||||||
|
|
||||||
|
damage_rfc = K1 * np.sum(sig_cp[:, 0] ** beta)
|
||||||
|
print("damage rfc : {}".format(damage_rfc))
|
||||||
|
plt.show('hold')
|
Loading…
Reference in New Issue