|
|
|
@ -335,8 +335,8 @@ class Profile(object):
|
|
|
|
|
'Something wrong with fit (par = {})'.format(str(par)))
|
|
|
|
|
|
|
|
|
|
def _profile_optimum(self, phatfree0, p_opt):
|
|
|
|
|
phatfree = optimize.fmin(
|
|
|
|
|
self._profile_fun, phatfree0, args=(p_opt,), disp=0)
|
|
|
|
|
phatfree = optimize.fmin(self._profile_fun, phatfree0, args=(p_opt,),
|
|
|
|
|
disp=0)
|
|
|
|
|
Lmax = -self._profile_fun(phatfree, p_opt)
|
|
|
|
|
self._correct_Lmax(Lmax, phatfree, p_opt)
|
|
|
|
|
return Lmax, phatfree
|
|
|
|
@ -740,8 +740,8 @@ class ProfileOld(object):
|
|
|
|
|
'Something wrong with fit (par = {})'.format(str(par)))
|
|
|
|
|
|
|
|
|
|
def _profile_optimum(self, phatfree0, p_opt):
|
|
|
|
|
phatfree = optimize.fmin(
|
|
|
|
|
self._profile_fun, phatfree0, args=(p_opt,), disp=0)
|
|
|
|
|
phatfree = optimize.fmin(self._profile_fun, phatfree0, args=(p_opt,),
|
|
|
|
|
disp=0)
|
|
|
|
|
Lmax = -self._profile_fun(phatfree, p_opt)
|
|
|
|
|
self._correct_Lmax(Lmax, phatfree, p_opt)
|
|
|
|
|
return Lmax, phatfree
|
|
|
|
@ -1353,7 +1353,8 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
Narg = len(args)
|
|
|
|
|
if Narg > dist.numargs + 2:
|
|
|
|
|
raise ValueError("Too many input arguments.")
|
|
|
|
|
if (Narg < dist.numargs + 2) or not ('loc' in kwds and 'scale' in kwds):
|
|
|
|
|
if (Narg < dist.numargs + 2) or not ('loc' in kwds and
|
|
|
|
|
'scale' in kwds):
|
|
|
|
|
# get distribution specific starting locations
|
|
|
|
|
start = dist._fitstart(data)
|
|
|
|
|
args += start[Narg:]
|
|
|
|
@ -1376,14 +1377,17 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
# by now kwds must be empty, since everybody took what they needed
|
|
|
|
|
if kwds:
|
|
|
|
|
raise TypeError("Unknown arguments: %s." % kwds)
|
|
|
|
|
output = optimizer(func, x0, args=(data,), full_output=True)
|
|
|
|
|
output = optimizer(func, x0, args=(data,), full_output=True,
|
|
|
|
|
disp=0)
|
|
|
|
|
|
|
|
|
|
# output = optimize.fmin_bfgs(func, vals, args=(data,), full_output=True)
|
|
|
|
|
# output = optimize.fmin_bfgs(func, vals, args=(data,),
|
|
|
|
|
# full_output=True)
|
|
|
|
|
# dfunc = nd.Gradient(func)(vals, data)
|
|
|
|
|
# nd.directionaldiff(f, x0, vec)
|
|
|
|
|
warnflag = output[-1]
|
|
|
|
|
if warnflag == 1:
|
|
|
|
|
output = optimizer(func, output[0], args=(data,), full_output=True)
|
|
|
|
|
output = optimizer(func, output[0], args=(data,),
|
|
|
|
|
full_output=True)
|
|
|
|
|
warnflag = output[-1]
|
|
|
|
|
vals = tuple(output[0])
|
|
|
|
|
if warnflag == 1:
|
|
|
|
@ -1550,12 +1554,11 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
fixstr = 'Fixed: phat[{0:s}] = {1:s} '.format(phatistr,
|
|
|
|
|
phatvstr)
|
|
|
|
|
|
|
|
|
|
infostr = 'Fit method: {0:s}, Fit p-value: {1:2.2f} {2:s}, phat=[{3:s}]'
|
|
|
|
|
subtxt = 'Fit method: {0:s}, Fit p-value: {1:2.2f} {2:s}, phat=[{3:s}]'
|
|
|
|
|
par_txt = ('{:1.2g}, '*len(self.par))[:-2].format(*self.par)
|
|
|
|
|
try:
|
|
|
|
|
plotbackend.figtext(0.05, 0.01, infostr.format(self.method.upper(),
|
|
|
|
|
self.pvalue,
|
|
|
|
|
fixstr,
|
|
|
|
|
plotbackend.figtext(0.05, 0.01, subtxt.format(self.method.upper(),
|
|
|
|
|
self.pvalue, fixstr,
|
|
|
|
|
par_txt))
|
|
|
|
|
except:
|
|
|
|
|
pass
|
|
|
|
@ -1727,10 +1730,10 @@ def test_doctstrings():
|
|
|
|
|
|
|
|
|
|
def test1():
|
|
|
|
|
import wafo.stats as ws
|
|
|
|
|
dist = ws.weibull_min
|
|
|
|
|
# dist = ws.weibull_min
|
|
|
|
|
# dist = ws.bradford
|
|
|
|
|
dist = ws.gengamma
|
|
|
|
|
R = dist.rvs(2,.5, size=500)
|
|
|
|
|
R = dist.rvs(2, .5, size=500)
|
|
|
|
|
phat = FitDistribution(dist, R, method='ml')
|
|
|
|
|
phats = FitDistribution(dist, R, method='mps')
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|