|
|
@ -15,6 +15,8 @@ import warnings
|
|
|
|
from .core import TrCommon, TrData
|
|
|
|
from .core import TrCommon, TrData
|
|
|
|
__all__ = ['TrHermite', 'TrLinear', 'TrOchi']
|
|
|
|
__all__ = ['TrHermite', 'TrLinear', 'TrOchi']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_EPS = np.finfo(float).eps
|
|
|
|
|
|
|
|
|
|
|
|
_example = '''
|
|
|
|
_example = '''
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> import wafo.spectrum.models as sm
|
|
|
|
>>> import wafo.spectrum.models as sm
|
|
|
@ -34,6 +36,16 @@ _example = '''
|
|
|
|
'''
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _assert(cond, msg):
|
|
|
|
|
|
|
|
if not cond:
|
|
|
|
|
|
|
|
raise ValueError(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _assert_warn(cond, msg):
|
|
|
|
|
|
|
|
if not cond:
|
|
|
|
|
|
|
|
warnings.warn(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TrCommon2(TrCommon):
|
|
|
|
class TrCommon2(TrCommon):
|
|
|
|
__doc__ = TrCommon.__doc__ # @ReservedAssignment
|
|
|
|
__doc__ = TrCommon.__doc__ # @ReservedAssignment
|
|
|
|
|
|
|
|
|
|
|
@ -132,91 +144,119 @@ class TrHermite(TrCommon2):
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwds):
|
|
|
|
def __init__(self, *args, **kwds):
|
|
|
|
super(TrHermite, self).__init__(*args, **kwds)
|
|
|
|
super(TrHermite, self).__init__(*args, **kwds)
|
|
|
|
self.pardef = kwds.get('pardef', 1)
|
|
|
|
|
|
|
|
self._c3 = None
|
|
|
|
self._c3 = None
|
|
|
|
self._c4 = None
|
|
|
|
self._c4 = None
|
|
|
|
self._forward = None
|
|
|
|
self._forward = None
|
|
|
|
self._backward = None
|
|
|
|
self._backward = None
|
|
|
|
self._x_limit = None
|
|
|
|
self._x_limit = None
|
|
|
|
|
|
|
|
self.pardef = kwds.get('pardef', 1)
|
|
|
|
self.set_poly()
|
|
|
|
self.set_poly()
|
|
|
|
|
|
|
|
|
|
|
|
def _poly_par_from_stats(self):
|
|
|
|
@property
|
|
|
|
skew = self.skew
|
|
|
|
def pardef(self):
|
|
|
|
ga2 = self.kurt - 3.0
|
|
|
|
return self._pardef
|
|
|
|
if ga2 <= 0:
|
|
|
|
|
|
|
|
self._c4 = ga2 / 24.
|
|
|
|
@pardef.setter
|
|
|
|
self._c3 = skew / 6.
|
|
|
|
def pardef(self, pardef):
|
|
|
|
elif self.pardef == 2:
|
|
|
|
self._pardef = pardef
|
|
|
|
# Winterstein 1988 parametrization
|
|
|
|
if pardef == 2:
|
|
|
|
if skew ** 2 > 8 * (ga2 + 3.) / 9.:
|
|
|
|
self._softening_parameters = self._winterstein1988
|
|
|
|
warnings.warn('Kurtosis too low compared to the skewness')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._c4 = (sqrt(1. + 1.5 * ga2) - 1.) / 18.
|
|
|
|
|
|
|
|
self._c3 = skew / (6. * (1 + 6. * self._c4))
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
# Winterstein et. al. 1994 parametrization intended to
|
|
|
|
self._softening_parameters = self._winterstein1994
|
|
|
|
# apply for the range: 0 <= ga2 < 12 and 0<= skew^2 < 2*ga2/3
|
|
|
|
|
|
|
|
if skew ** 2 > 2 * (ga2) / 3:
|
|
|
|
|
|
|
|
warnings.warn('Kurtosis too low compared to the skewness')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (ga2 < 0) or (12 < ga2):
|
|
|
|
|
|
|
|
warnings.warn('Kurtosis must be between 0 and 12')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._c3 = skew / 6 * \
|
|
|
|
|
|
|
|
(1 - 0.015 * abs(skew) + 0.3 * skew ** 2) / (1 + 0.2 * ga2)
|
|
|
|
|
|
|
|
if ga2 == 0.:
|
|
|
|
|
|
|
|
self._c4 = 0.0
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
expon = 1. - 0.1 * (ga2 + 3.) ** 0.8
|
|
|
|
|
|
|
|
c41 = (1. - 1.43 * skew ** 2. / ga2) ** (expon)
|
|
|
|
|
|
|
|
self._c4 = 0.1 * ((1. + 1.25 * ga2) ** (1. / 3.) - 1.) * c41
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not np.isfinite(self._c3) or not np.isfinite(self._c4):
|
|
|
|
def _check_c3_c4(self, c3, c4):
|
|
|
|
raise ValueError('Unable to calculate the polynomial')
|
|
|
|
_assert(np.isfinite(c3) and np.isfinite(c4),
|
|
|
|
|
|
|
|
'Unable to calculate the polynomial')
|
|
|
|
|
|
|
|
if abs(c4) < sqrt(_EPS):
|
|
|
|
|
|
|
|
c4 = 0.0
|
|
|
|
|
|
|
|
return c4
|
|
|
|
|
|
|
|
|
|
|
|
def set_poly(self):
|
|
|
|
def _winterstein1988(self, skew, excess_kurtosis):
|
|
|
|
'''
|
|
|
|
"""Winterstein 1988 parametrization"""
|
|
|
|
Set poly function from stats (i.e., mean, sigma, skew and kurt)
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self._c3 is None:
|
|
|
|
_assert_warn(skew ** 2 <= 8 * (excess_kurtosis + 3.) / 9,
|
|
|
|
self._poly_par_from_stats()
|
|
|
|
'Kurtosis too low compared to the skewness')
|
|
|
|
eps = np.finfo(float).eps
|
|
|
|
c4 = (sqrt(1. + 1.5 * excess_kurtosis) - 1.) / 18.
|
|
|
|
c3 = self._c3
|
|
|
|
c3 = skew / (6. * (1 + 6. * c4))
|
|
|
|
c4 = self._c4
|
|
|
|
c4 = self._check_c3_c4(c3, c4)
|
|
|
|
ma = self.mean
|
|
|
|
return c3, c4
|
|
|
|
sa = self.sigma
|
|
|
|
|
|
|
|
if abs(c4) < sqrt(eps):
|
|
|
|
def _winterstein1994(self, skew, excess_kurtosis):
|
|
|
|
c4 = 0.0
|
|
|
|
"""Winterstein et. al. 1994 parametrization
|
|
|
|
|
|
|
|
|
|
|
|
# gdef = self.kurt-3.0
|
|
|
|
intended to apply for the range:
|
|
|
|
if self.kurt < 3.0:
|
|
|
|
|
|
|
|
p = np.poly1d([-c4, -c3, 1. + 3. * c4, c3]) # forward, g
|
|
|
|
0 <= excess_kurtosis < 12 and 0<= skew^2 < 2*excess_kurtosis/3
|
|
|
|
self._forward = p
|
|
|
|
"""
|
|
|
|
self._backward = None
|
|
|
|
_assert_warn(skew ** 2 <= 2 * (excess_kurtosis) / 3,
|
|
|
|
|
|
|
|
'Kurtosis too low compared to the skewness')
|
|
|
|
|
|
|
|
_assert_warn(0 <= excess_kurtosis < 12,
|
|
|
|
|
|
|
|
'Kurtosis must be between 0 and 12')
|
|
|
|
|
|
|
|
c3 = (skew / 6 * (1 - 0.015 * abs(skew) + 0.3 * skew ** 2) /
|
|
|
|
|
|
|
|
(1 + 0.2 * excess_kurtosis))
|
|
|
|
|
|
|
|
if excess_kurtosis == 0.:
|
|
|
|
|
|
|
|
c4 = 0.0
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
Km1 = np.sqrt(1. + 2. * c3 ** 2 + 6 * c4 ** 2)
|
|
|
|
expon = 1. - 0.1 * (excess_kurtosis + 3.) ** 0.8
|
|
|
|
# backward G
|
|
|
|
c41 = (1. - 1.43 * skew ** 2. / excess_kurtosis) ** (expon)
|
|
|
|
p = np.poly1d(np.r_[c4, c3, 1. - 3. * c4, -c3] / Km1)
|
|
|
|
c4 = 0.1 * ((1. + 1.25 * excess_kurtosis) ** (1. / 3.) - 1.) * c41
|
|
|
|
self._forward = None
|
|
|
|
c4 = self._check_c3_c4(c3, c4)
|
|
|
|
self._backward = p
|
|
|
|
return c3, c4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _hardening_parameters(self, skew, excess_kurtosis):
|
|
|
|
|
|
|
|
c4 = excess_kurtosis / 24.
|
|
|
|
|
|
|
|
c3 = skew / 6.
|
|
|
|
|
|
|
|
c4 = self._check_c3_c4(c3, c4)
|
|
|
|
|
|
|
|
return c3, c4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _set_x_limit(self, root, polynom):
|
|
|
|
|
|
|
|
"""Compute where it is possible to invert the polynomial"""
|
|
|
|
|
|
|
|
if self.kurt <= 3.:
|
|
|
|
|
|
|
|
self._x_limit = root
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
self._x_limit = self.sigma * polynom(root) + self.mean
|
|
|
|
|
|
|
|
txt1 = '''
|
|
|
|
|
|
|
|
The polynomial is not a strictly increasing function.
|
|
|
|
|
|
|
|
The derivative of g(x) is infinite at x = %g''' % self._x_limit
|
|
|
|
|
|
|
|
warnings.warn(txt1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _check_monotonicity(self, p):
|
|
|
|
|
|
|
|
dp = p.deriv(m=1) # derivative
|
|
|
|
|
|
|
|
roots = dp.r # roots of the derivative
|
|
|
|
|
|
|
|
roots = roots[where(abs(imag(roots)) < _EPS)] # Keep only real roots
|
|
|
|
|
|
|
|
if roots.size > 0:
|
|
|
|
|
|
|
|
self._set_x_limit(roots, p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _set_hardening_model(self):
|
|
|
|
|
|
|
|
skew, excess_kurtosis = self.skew, self.kurt - 3.0
|
|
|
|
|
|
|
|
c3, c4 = self._hardening_parameters(skew, excess_kurtosis)
|
|
|
|
|
|
|
|
p = np.poly1d([-c4, -c3, 1. + 3. * c4, c3])
|
|
|
|
|
|
|
|
self._forward = p
|
|
|
|
|
|
|
|
self._backward = lambda yn: self._poly_inv(self._forward, yn)
|
|
|
|
|
|
|
|
# Check if it is a strictly increasing function.
|
|
|
|
|
|
|
|
self._check_monotonicity(p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _set_softening_model(self):
|
|
|
|
|
|
|
|
skew, excess_kurtosis = self.skew, self.kurt - 3.0
|
|
|
|
|
|
|
|
c3, c4 = self._softening_parameters(skew, excess_kurtosis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Km1 = np.sqrt(1. + 2. * c3 ** 2 + 6 * c4 ** 2)
|
|
|
|
|
|
|
|
# backward G
|
|
|
|
|
|
|
|
p = np.poly1d(np.r_[c4, c3, 1. - 3. * c4, -c3] / Km1)
|
|
|
|
|
|
|
|
self._backward = p
|
|
|
|
|
|
|
|
self._forward = lambda yn: self._poly_inv(self._backward, yn)
|
|
|
|
|
|
|
|
|
|
|
|
# Check if it is a strictly increasing function.
|
|
|
|
# Check if it is a strictly increasing function.
|
|
|
|
dp = p.deriv(m=1) # % Derivative
|
|
|
|
self._check_monotonicity(p)
|
|
|
|
r = dp.r # % Find roots of the derivative
|
|
|
|
|
|
|
|
r = r[where(abs(imag(r)) < eps)] # Keep only real roots
|
|
|
|
def set_poly(self):
|
|
|
|
|
|
|
|
'''
|
|
|
|
if r.size > 0:
|
|
|
|
Set poly function from stats (i.e., mean, sigma, skew and kurt)
|
|
|
|
# Compute where it is possible to invert the polynomial
|
|
|
|
'''
|
|
|
|
if self.kurt < 3.:
|
|
|
|
if self.kurt <= 3.0:
|
|
|
|
self._x_limit = r
|
|
|
|
self._set_hardening_model()
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
self._x_limit = sa * p(r) + ma
|
|
|
|
self._set_softening_model()
|
|
|
|
txt1 = '''
|
|
|
|
|
|
|
|
The polynomial is not a strictly increasing function.
|
|
|
|
|
|
|
|
The derivative of g(x) is infinite at x = %g''' % self._x_limit
|
|
|
|
|
|
|
|
warnings.warn(txt1)
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_forward(self, x):
|
|
|
|
def check_forward(self, x):
|
|
|
|
if self._x_limit is not None:
|
|
|
|
if self._x_limit is not None:
|
|
|
@ -262,6 +302,18 @@ class TrHermite(TrCommon2):
|
|
|
|
xn = self._backward(yn)
|
|
|
|
xn = self._backward(yn)
|
|
|
|
return self.sigma * xn + self.mean
|
|
|
|
return self.sigma * xn + self.mean
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _solve_quadratic(self, p, xn):
|
|
|
|
|
|
|
|
# Quadratic: Solve a*u**2+b*u+c = xn
|
|
|
|
|
|
|
|
coefs = p.coeffs
|
|
|
|
|
|
|
|
a = coefs[0]
|
|
|
|
|
|
|
|
b = coefs[1]
|
|
|
|
|
|
|
|
c = coefs[2] - xn
|
|
|
|
|
|
|
|
t = 0.5 * (b + sign(b) * sqrt(b ** 2 - 4 * a * c))
|
|
|
|
|
|
|
|
# so1 = t/a # largest solution
|
|
|
|
|
|
|
|
so2 = -c / t # smallest solution
|
|
|
|
|
|
|
|
return so2
|
|
|
|
|
|
|
|
|
|
|
|
def _poly_inv(self, p, xn):
|
|
|
|
def _poly_inv(self, p, xn):
|
|
|
|
'''
|
|
|
|
'''
|
|
|
|
Invert polynomial
|
|
|
|
Invert polynomial
|
|
|
@ -269,32 +321,27 @@ class TrHermite(TrCommon2):
|
|
|
|
if p.order < 2:
|
|
|
|
if p.order < 2:
|
|
|
|
return xn
|
|
|
|
return xn
|
|
|
|
elif p.order == 2:
|
|
|
|
elif p.order == 2:
|
|
|
|
# Quadratic: Solve a*u**2+b*u+c = xn
|
|
|
|
return self._solve_quadratic(p, xn)
|
|
|
|
coefs = p.coeffs
|
|
|
|
|
|
|
|
a = coefs[0]
|
|
|
|
|
|
|
|
b = coefs[1]
|
|
|
|
|
|
|
|
c = coefs[2] - xn
|
|
|
|
|
|
|
|
t = 0.5 * (b + sign(b) * sqrt(b ** 2 - 4 * a * c))
|
|
|
|
|
|
|
|
# so1 = t/a # largest solution
|
|
|
|
|
|
|
|
so2 = -c / t # smallest solution
|
|
|
|
|
|
|
|
return so2
|
|
|
|
|
|
|
|
elif p.order == 3:
|
|
|
|
elif p.order == 3:
|
|
|
|
# Solve
|
|
|
|
return self._solve_third_order(p, xn)
|
|
|
|
# K*(c4*u^3+c3*u^2+(1-3*c4)*u-c3) = xn = (x-ma)/sa
|
|
|
|
|
|
|
|
# -c4*xn^3-c3*xn^2+(1+3*c4)*xn+c3 = u
|
|
|
|
def _solve_third_order(self, p, xn):
|
|
|
|
coefs = p.coeffs[1::] / p.coeffs[0]
|
|
|
|
# Solve
|
|
|
|
a = coefs[0]
|
|
|
|
# K*(c4*u^3+c3*u^2+(1-3*c4)*u-c3) = xn = (x-ma)/sa
|
|
|
|
b = coefs[1]
|
|
|
|
# -c4*xn^3-c3*xn^2+(1+3*c4)*xn+c3 = u
|
|
|
|
c = coefs[2] - xn / p.coeffs[0]
|
|
|
|
coefs = p.coeffs[1::] / p.coeffs[0]
|
|
|
|
|
|
|
|
a = coefs[0]
|
|
|
|
x0 = a / 3.
|
|
|
|
b = coefs[1]
|
|
|
|
# substitue xn = z-x0 and divide by c4 => z^3 + 3*p1*z+2*q0 = 0
|
|
|
|
c = coefs[2] - xn / p.coeffs[0]
|
|
|
|
p1 = b / 3 - x0 ** 2
|
|
|
|
|
|
|
|
# p1 = (b-a**2/3)/3
|
|
|
|
x0 = a / 3.
|
|
|
|
|
|
|
|
# substitue xn = z-x0 and divide by c4 => z^3 + 3*p1*z+2*q0 = 0
|
|
|
|
# q0 = (c + x0*(2.*x0/3.-b))/2.
|
|
|
|
p1 = b / 3 - x0 ** 2
|
|
|
|
# q0 = x0**3 -a*b/6 +c/2
|
|
|
|
# p1 = (b-a**2/3)/3
|
|
|
|
q0 = x0 * (x0 ** 2 - b / 2) + c / 2
|
|
|
|
|
|
|
|
|
|
|
|
# q0 = (c + x0*(2.*x0/3.-b))/2.
|
|
|
|
|
|
|
|
# q0 = x0**3 -a*b/6 +c/2
|
|
|
|
|
|
|
|
q0 = x0 * (x0 ** 2 - b / 2) + c / 2
|
|
|
|
# z^3+3*p1*z+2*q0=0
|
|
|
|
# z^3+3*p1*z+2*q0=0
|
|
|
|
|
|
|
|
|
|
|
|
# c3 = self._c3
|
|
|
|
# c3 = self._c3
|
|
|
@ -305,23 +352,23 @@ class TrHermite(TrCommon2):
|
|
|
|
# p1 = b1-1.-x0**2.
|
|
|
|
# p1 = b1-1.-x0**2.
|
|
|
|
# Km1 = np.sqrt(1.+2.*c3**2+6*c4**2)
|
|
|
|
# Km1 = np.sqrt(1.+2.*c3**2+6*c4**2)
|
|
|
|
# q0 = x0**3-1.5*b1*(x0+xn*Km1)
|
|
|
|
# q0 = x0**3-1.5*b1*(x0+xn*Km1)
|
|
|
|
# q0 = x0**3-1.5*b1*(x0+xn)
|
|
|
|
# q0 = x0**3-1.5*b1*(x0+xn)
|
|
|
|
if self._x_limit is not None: # % Three real roots
|
|
|
|
if self._x_limit is not None: # % Three real roots
|
|
|
|
d = sqrt(-p1)
|
|
|
|
d = sqrt(-p1)
|
|
|
|
theta1 = arccos(-q0 / d ** 3) / 3
|
|
|
|
theta1 = arccos(-q0 / d ** 3) / 3
|
|
|
|
th2 = np.r_[0, -2 * pi / 3, 2 * pi / 3]
|
|
|
|
th2 = np.r_[0, -2 * pi / 3, 2 * pi / 3]
|
|
|
|
x1 = abs(2 * d * cos(theta1[ceil(len(xn) / 2)] + th2) - x0)
|
|
|
|
x1 = abs(2 * d * cos(theta1[ceil(len(xn) / 2)] + th2) - x0)
|
|
|
|
ix = x1.argmin() # % choose the smallest solution
|
|
|
|
ix = x1.argmin() # choose the smallest solution
|
|
|
|
return 2. * d * cos(theta1 + th2[ix]) - x0
|
|
|
|
return 2. * d * cos(theta1 + th2[ix]) - x0
|
|
|
|
else: # %Only one real root exist
|
|
|
|
else: # Only one real root exist
|
|
|
|
q1 = sqrt((q0) ** 2 + p1 ** 3)
|
|
|
|
q1 = sqrt((q0) ** 2 + p1 ** 3)
|
|
|
|
# Find the real root of the monic polynomial
|
|
|
|
# Find the real root of the monic polynomial
|
|
|
|
A0 = (q1 - q0) ** (1. / 3.)
|
|
|
|
A0 = (q1 - q0) ** (1. / 3.)
|
|
|
|
B0 = -(q1 + q0) ** (1. / 3.)
|
|
|
|
B0 = -(q1 + q0) ** (1. / 3.)
|
|
|
|
return A0 + B0 - x0 # % real root
|
|
|
|
return A0 + B0 - x0 # real root
|
|
|
|
# The other complex roots are given by
|
|
|
|
# The other complex roots are given by
|
|
|
|
# x= -(A0+B0)/2+(A0-B0)*sqrt(3)/2-x0
|
|
|
|
# x= -(A0+B0)/2+(A0-B0)*sqrt(3)/2-x0
|
|
|
|
# x=-(A0+B0)/2+(A0-B0)*sqrt(-3)/2-x0
|
|
|
|
# x=-(A0+B0)/2+(A0-B0)*sqrt(-3)/2-x0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TrLinear(TrCommon2):
|
|
|
|
class TrLinear(TrCommon2):
|
|
|
|