|
|
@ -13,7 +13,8 @@ from scipy import optimize
|
|
|
|
from scipy import integrate
|
|
|
|
from scipy import integrate
|
|
|
|
from scipy.special import (gammaln as gamln, gamma as gam, boxcox, boxcox1p,
|
|
|
|
from scipy.special import (gammaln as gamln, gamma as gam, boxcox, boxcox1p,
|
|
|
|
inv_boxcox, inv_boxcox1p, erfc, chndtr, chndtrix,
|
|
|
|
inv_boxcox, inv_boxcox1p, erfc, chndtr, chndtrix,
|
|
|
|
log1p, expm1)
|
|
|
|
log1p, expm1,
|
|
|
|
|
|
|
|
i0, i1, ndtr as _norm_cdf, log_ndtr as _norm_logcdf)
|
|
|
|
|
|
|
|
|
|
|
|
from numpy import (where, arange, putmask, ravel, shape,
|
|
|
|
from numpy import (where, arange, putmask, ravel, shape,
|
|
|
|
log, sqrt, exp, arctanh, tan, sin, arcsin, arctan,
|
|
|
|
log, sqrt, exp, arctanh, tan, sin, arcsin, arctan,
|
|
|
@ -32,9 +33,8 @@ from scipy.stats._tukeylambda_stats import (tukeylambda_variance as _tlvar,
|
|
|
|
tukeylambda_kurtosis as _tlkurt)
|
|
|
|
tukeylambda_kurtosis as _tlkurt)
|
|
|
|
|
|
|
|
|
|
|
|
from ._distn_infrastructure import (
|
|
|
|
from ._distn_infrastructure import (
|
|
|
|
rv_continuous, valarray, _skew, _kurtosis, # @UnresolvedImport
|
|
|
|
rv_continuous, valarray, _skew, _kurtosis, _lazywhere,
|
|
|
|
_lazywhere, _ncx2_log_pdf, _ncx2_pdf, _ncx2_cdf, # @UnresolvedImport
|
|
|
|
_ncx2_log_pdf, _ncx2_pdf, _ncx2_cdf, get_distribution_names,
|
|
|
|
get_distribution_names, # @UnresolvedImport
|
|
|
|
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
from ._constants import _XMIN, _EULER, _ZETA3, _XMAX, _LOGXMAX, _EPS
|
|
|
|
from ._constants import _XMIN, _EULER, _ZETA3, _XMAX, _LOGXMAX, _EPS
|
|
|
@ -89,24 +89,16 @@ def _norm_logpdf(x):
|
|
|
|
return -x**2 / 2.0 - _norm_pdf_logC
|
|
|
|
return -x**2 / 2.0 - _norm_pdf_logC
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_cdf(x):
|
|
|
|
|
|
|
|
return special.ndtr(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_logcdf(x):
|
|
|
|
|
|
|
|
return special.log_ndtr(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_ppf(q):
|
|
|
|
def _norm_ppf(q):
|
|
|
|
return special.ndtri(q)
|
|
|
|
return special.ndtri(q)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_sf(x):
|
|
|
|
def _norm_sf(x):
|
|
|
|
return special.ndtr(-x)
|
|
|
|
return _norm_cdf(-x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_logsf(x):
|
|
|
|
def _norm_logsf(x):
|
|
|
|
return special.log_ndtr(-x)
|
|
|
|
return _norm_logcdf(-x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_isf(q):
|
|
|
|
def _norm_isf(q):
|
|
|
@ -127,6 +119,10 @@ class norm_gen(rv_continuous):
|
|
|
|
|
|
|
|
|
|
|
|
norm.pdf(x) = exp(-x**2/2)/sqrt(2*pi)
|
|
|
|
norm.pdf(x) = exp(-x**2/2)/sqrt(2*pi)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The survival function, ``norm.sf``, is also referred to as the
|
|
|
|
|
|
|
|
Q-function in some contexts (see, e.g.,
|
|
|
|
|
|
|
|
`Wikipedia's <https://en.wikipedia.org/wiki/Q-function>`_ definition).
|
|
|
|
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
%(example)s
|
|
|
@ -220,13 +216,13 @@ class alpha_gen(rv_continuous):
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, a):
|
|
|
|
def _pdf(self, x, a):
|
|
|
|
return 1.0/(x**2)/special.ndtr(a)*_norm_pdf(a-1.0/x)
|
|
|
|
return 1.0/(x**2)/_norm_cdf(a)*_norm_pdf(a-1.0/x)
|
|
|
|
|
|
|
|
|
|
|
|
def _logpdf(self, x, a):
|
|
|
|
def _logpdf(self, x, a):
|
|
|
|
return -2*log(x) + _norm_logpdf(a-1.0/x) - log(special.ndtr(a))
|
|
|
|
return -2*log(x) + _norm_logpdf(a-1.0/x) - log(_norm_cdf(a))
|
|
|
|
|
|
|
|
|
|
|
|
def _cdf(self, x, a):
|
|
|
|
def _cdf(self, x, a):
|
|
|
|
return special.ndtr(a-1.0/x) / special.ndtr(a)
|
|
|
|
return _norm_cdf(a-1.0/x) / _norm_cdf(a)
|
|
|
|
|
|
|
|
|
|
|
|
def _ppf(self, q, a):
|
|
|
|
def _ppf(self, q, a):
|
|
|
|
return 1.0/asarray(a-special.ndtri(q*special.ndtr(a)))
|
|
|
|
return 1.0/asarray(a-special.ndtri(q*special.ndtr(a)))
|
|
|
@ -1221,12 +1217,12 @@ class exponnorm_gen(rv_continuous):
|
|
|
|
def _cdf(self, x, K):
|
|
|
|
def _cdf(self, x, K):
|
|
|
|
invK = 1.0 / K
|
|
|
|
invK = 1.0 / K
|
|
|
|
expval = invK * (0.5 * invK - x)
|
|
|
|
expval = invK * (0.5 * invK - x)
|
|
|
|
return special.ndtr(x) - exp(expval) * special.ndtr(x - invK)
|
|
|
|
return _norm_cdf(x) - exp(expval) * _norm_cdf(x - invK)
|
|
|
|
|
|
|
|
|
|
|
|
def _sf(self, x, K):
|
|
|
|
def _sf(self, x, K):
|
|
|
|
invK = 1.0 / K
|
|
|
|
invK = 1.0 / K
|
|
|
|
expval = invK * (0.5 * invK - x)
|
|
|
|
expval = invK * (0.5 * invK - x)
|
|
|
|
return special.ndtr(-x) + exp(expval) * special.ndtr(x - invK)
|
|
|
|
return _norm_cdf(-x) + exp(expval) * _norm_cdf(x - invK)
|
|
|
|
|
|
|
|
|
|
|
|
def _stats(self, K):
|
|
|
|
def _stats(self, K):
|
|
|
|
K2 = K * K
|
|
|
|
K2 = K * K
|
|
|
@ -1366,7 +1362,7 @@ class fatiguelife_gen(rv_continuous):
|
|
|
|
0.5*(log(2*pi) + 3*log(x)))
|
|
|
|
0.5*(log(2*pi) + 3*log(x)))
|
|
|
|
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return special.ndtr(1.0 / c * (sqrt(x) - 1.0/sqrt(x)))
|
|
|
|
return _norm_cdf(1.0 / c * (sqrt(x) - 1.0/sqrt(x)))
|
|
|
|
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
tmp = c*special.ndtri(q)
|
|
|
|
tmp = c*special.ndtri(q)
|
|
|
@ -1545,7 +1541,7 @@ class foldnorm_gen(rv_continuous):
|
|
|
|
return _norm_pdf(x + c) + _norm_pdf(x-c)
|
|
|
|
return _norm_pdf(x + c) + _norm_pdf(x-c)
|
|
|
|
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return special.ndtr(x-c) + special.ndtr(x+c) - 1.0
|
|
|
|
return _norm_cdf(x-c) + _norm_cdf(x+c) - 1.0
|
|
|
|
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
def _stats(self, c):
|
|
|
|
# Regina C. Elandt, Technometrics 3, 551 (1961)
|
|
|
|
# Regina C. Elandt, Technometrics 3, 551 (1961)
|
|
|
@ -2061,6 +2057,13 @@ class genextreme_gen(rv_continuous):
|
|
|
|
return _lazywhere((x == x) & (c != 0), (x, c),
|
|
|
|
return _lazywhere((x == x) & (c != 0), (x, c),
|
|
|
|
lambda x, c: -expm1(-c * x) / c, x)
|
|
|
|
lambda x, c: -expm1(-c * x) / c, x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _isf(self, q, c):
|
|
|
|
|
|
|
|
x = -log(-special.log1p(-q))
|
|
|
|
|
|
|
|
result = _lazywhere((c == 0)*(x == x), (x, c),
|
|
|
|
|
|
|
|
f=lambda x, c: x,
|
|
|
|
|
|
|
|
f2=lambda x, c: -special.expm1(-c*x)/c)
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
def _stats(self, c):
|
|
|
|
g = lambda n: gam(n*c+1)
|
|
|
|
g = lambda n: gam(n*c+1)
|
|
|
|
g1 = g(1)
|
|
|
|
g1 = g(1)
|
|
|
@ -2087,16 +2090,6 @@ class genextreme_gen(rv_continuous):
|
|
|
|
ku = where(abs(c) <= (eps)**0.23, 12.0/5.0, ku1-3.0)
|
|
|
|
ku = where(abs(c) <= (eps)**0.23, 12.0/5.0, ku1-3.0)
|
|
|
|
return m, v, sk, ku
|
|
|
|
return m, v, sk, ku
|
|
|
|
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
|
|
|
|
k = arange(0, n+1)
|
|
|
|
|
|
|
|
vals = 1.0/c**n * np.sum(
|
|
|
|
|
|
|
|
comb(n, k) * (-1)**k * special.gamma(c*k + 1),
|
|
|
|
|
|
|
|
axis=0)
|
|
|
|
|
|
|
|
return where(c*n > -1, vals, inf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
|
|
|
|
return _EULER*(1 - c) + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
def _fitstart(self, data):
|
|
|
|
d = asarray(data)
|
|
|
|
d = asarray(data)
|
|
|
|
# Probability weighted moments
|
|
|
|
# Probability weighted moments
|
|
|
@ -2114,6 +2107,17 @@ class genextreme_gen(rv_continuous):
|
|
|
|
(exp(gamln(1 + shape)) * (1 - 2 ** (-shape)))
|
|
|
|
(exp(gamln(1 + shape)) * (1 - 2 ** (-shape)))
|
|
|
|
loc = b0 + scale * (expm1(gamln(1 + shape))) / shape
|
|
|
|
loc = b0 + scale * (expm1(gamln(1 + shape))) / shape
|
|
|
|
return shape, loc, scale
|
|
|
|
return shape, loc, scale
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
|
|
|
|
k = arange(0, n+1)
|
|
|
|
|
|
|
|
vals = 1.0/c**n * np.sum(
|
|
|
|
|
|
|
|
comb(n, k) * (-1)**k * special.gamma(c*k + 1),
|
|
|
|
|
|
|
|
axis=0)
|
|
|
|
|
|
|
|
return where(c*n > -1, vals, inf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
|
|
|
|
return _EULER*(1 - c) + 1
|
|
|
|
|
|
|
|
|
|
|
|
genextreme = genextreme_gen(name='genextreme')
|
|
|
|
genextreme = genextreme_gen(name='genextreme')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -2695,7 +2699,7 @@ class halfnorm_gen(rv_continuous):
|
|
|
|
return 0.5 * np.log(2.0/pi) - x*x/2.0
|
|
|
|
return 0.5 * np.log(2.0/pi) - x*x/2.0
|
|
|
|
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
def _cdf(self, x):
|
|
|
|
return special.ndtr(x)*2-1.0
|
|
|
|
return _norm_cdf(x)*2-1.0
|
|
|
|
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
def _ppf(self, q):
|
|
|
|
return special.ndtri((1+q)/2.0)
|
|
|
|
return special.ndtri((1+q)/2.0)
|
|
|
@ -2852,7 +2856,7 @@ class invgauss_gen(rv_continuous):
|
|
|
|
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
|
|
|
|
When `mu` is too small, evaluating the cumulative density function will be
|
|
|
|
When `mu` is too small, evaluating the cumulative distribution function will be
|
|
|
|
inaccurate due to ``cdf(mu -> 0) = inf * 0``.
|
|
|
|
inaccurate due to ``cdf(mu -> 0) = inf * 0``.
|
|
|
|
NaNs are returned for ``mu <= 0.0028``.
|
|
|
|
NaNs are returned for ``mu <= 0.0028``.
|
|
|
|
|
|
|
|
|
|
|
@ -3348,9 +3352,18 @@ class lognorm_gen(rv_continuous):
|
|
|
|
def _cdf(self, x, s):
|
|
|
|
def _cdf(self, x, s):
|
|
|
|
return _norm_cdf(log(x) / s)
|
|
|
|
return _norm_cdf(log(x) / s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _logcdf(self, x, s):
|
|
|
|
|
|
|
|
return _norm_logcdf(log(x) / s)
|
|
|
|
|
|
|
|
|
|
|
|
def _ppf(self, q, s):
|
|
|
|
def _ppf(self, q, s):
|
|
|
|
return exp(s * _norm_ppf(q))
|
|
|
|
return exp(s * _norm_ppf(q))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _sf(self, x, s):
|
|
|
|
|
|
|
|
return _norm_sf(log(x) / s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _logsf(self, x, s):
|
|
|
|
|
|
|
|
return _norm_logsf(log(x) / s)
|
|
|
|
|
|
|
|
|
|
|
|
def _stats(self, s):
|
|
|
|
def _stats(self, s):
|
|
|
|
p = exp(s*s)
|
|
|
|
p = exp(s*s)
|
|
|
|
mu = sqrt(p)
|
|
|
|
mu = sqrt(p)
|
|
|
@ -4546,13 +4559,13 @@ class skew_norm_gen(rv_continuous):
|
|
|
|
|
|
|
|
|
|
|
|
Notes
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
-----
|
|
|
|
The pdf is
|
|
|
|
The pdf is::
|
|
|
|
|
|
|
|
|
|
|
|
skewnorm.pdf(x, a) = 2*norm.pdf(x)*norm.cdf(ax)
|
|
|
|
skewnorm.pdf(x, a) = 2*norm.pdf(x)*norm.cdf(ax)
|
|
|
|
|
|
|
|
|
|
|
|
`skewnorm` takes ``a`` as a skewness parameter
|
|
|
|
`skewnorm` takes ``a`` as a skewness parameter
|
|
|
|
When a=0 the distribution is identical to a normal distribution.
|
|
|
|
When a=0 the distribution is identical to a normal distribution.
|
|
|
|
rvs implements the method of [1].
|
|
|
|
rvs implements the method of [1]_.
|
|
|
|
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
|
|
|
@ -4562,7 +4575,7 @@ class skew_norm_gen(rv_continuous):
|
|
|
|
References
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
----------
|
|
|
|
|
|
|
|
|
|
|
|
[1] A. Azzalini and A. Capitanio (1999). Statistical applications of the
|
|
|
|
.. [1] A. Azzalini and A. Capitanio (1999). Statistical applications of the
|
|
|
|
multivariate skew-normal distribution. J. Roy. Statist. Soc., B 61, 579-602.
|
|
|
|
multivariate skew-normal distribution. J. Roy. Statist. Soc., B 61, 579-602.
|
|
|
|
http://azzalini.stat.unipd.it/SN/faq-r.html
|
|
|
|
http://azzalini.stat.unipd.it/SN/faq-r.html
|
|
|
|
"""
|
|
|
|
"""
|
|
|
@ -4597,6 +4610,56 @@ class skew_norm_gen(rv_continuous):
|
|
|
|
|
|
|
|
|
|
|
|
skewnorm = skew_norm_gen(name='skewnorm')
|
|
|
|
skewnorm = skew_norm_gen(name='skewnorm')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class trapz_gen(rv_continuous):
|
|
|
|
|
|
|
|
"""A trapezoidal continuous random variable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Notes
|
|
|
|
|
|
|
|
-----
|
|
|
|
|
|
|
|
The trapezoidal distribution can be represented with an up-sloping line
|
|
|
|
|
|
|
|
from ``loc`` to ``(loc + c*scale)``, then constant to ``(loc + d*scale)``
|
|
|
|
|
|
|
|
and then downsloping from ``(loc + d*scale)`` to ``(loc+scale)``.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`trapz` takes ``c`` and ``d`` as shape parameters.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The standard form is in the range [0, 1] with c the mode.
|
|
|
|
|
|
|
|
The location parameter shifts the start to `loc`.
|
|
|
|
|
|
|
|
The scale parameter changes the width from 1 to `scale`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _argcheck(self, c, d):
|
|
|
|
|
|
|
|
return (c >= 0) & (c <= 1) & (d >= 0) & (d <= 1) & (d >= c)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _pdf(self, x, c, d):
|
|
|
|
|
|
|
|
u = 2 / (d - c + 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
condlist = [x < c, x <= d, x > d]
|
|
|
|
|
|
|
|
choicelist = [u * x / c, u, u * (1 - x) / (1 - d)]
|
|
|
|
|
|
|
|
return np.select(condlist, choicelist)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _cdf(self, x, c, d):
|
|
|
|
|
|
|
|
condlist = [x < c, x <= d, x > d]
|
|
|
|
|
|
|
|
choicelist = [x**2 / c / (d - c + 1),
|
|
|
|
|
|
|
|
(c + 2 * (x - c)) / (d - c + 1),
|
|
|
|
|
|
|
|
1 - ((1 - x)**2 / (d - c + 1) / (1 - d))]
|
|
|
|
|
|
|
|
return np.select(condlist, choicelist)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _ppf(self, q, c, d):
|
|
|
|
|
|
|
|
qc, qd = self._cdf(c, c, d), self._cdf(d, c, d)
|
|
|
|
|
|
|
|
condlist = [q < qc, q <= qd, q > qd]
|
|
|
|
|
|
|
|
choicelist = [np.sqrt(q * c * (1 + d - c)),
|
|
|
|
|
|
|
|
0.5 * q * (1 + d - c) + 0.5 * c,
|
|
|
|
|
|
|
|
1 - sqrt((1 - q) * (d - c + 1) * (1 - d))]
|
|
|
|
|
|
|
|
return np.select(condlist, choicelist)
|
|
|
|
|
|
|
|
trapz = trapz_gen(a=0.0, b=1.0, name="trapz")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class triang_gen(rv_continuous):
|
|
|
|
class triang_gen(rv_continuous):
|
|
|
|
"""A triangular continuous random variable.
|
|
|
|
"""A triangular continuous random variable.
|
|
|
|
|
|
|
|
|
|
|
@ -4868,13 +4931,17 @@ class vonmises_gen(rv_continuous):
|
|
|
|
return self._random_state.vonmises(0.0, kappa, size=self._size)
|
|
|
|
return self._random_state.vonmises(0.0, kappa, size=self._size)
|
|
|
|
|
|
|
|
|
|
|
|
def _pdf(self, x, kappa):
|
|
|
|
def _pdf(self, x, kappa):
|
|
|
|
return exp(kappa * cos(x)) / (2*pi*special.i0(kappa))
|
|
|
|
return exp(kappa * cos(x)) / (2*pi*i0(kappa))
|
|
|
|
|
|
|
|
|
|
|
|
def _cdf(self, x, kappa):
|
|
|
|
def _cdf(self, x, kappa):
|
|
|
|
return vonmises_cython.von_mises_cdf(kappa, x)
|
|
|
|
return vonmises_cython.von_mises_cdf(kappa, x)
|
|
|
|
|
|
|
|
|
|
|
|
def _stats_skip(self, kappa):
|
|
|
|
def _stats_skip(self, kappa):
|
|
|
|
return 0, None, 0, None
|
|
|
|
return 0, None, 0, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _entropy(self, kappa):
|
|
|
|
|
|
|
|
return (-kappa * i1(kappa) / i0(kappa)
|
|
|
|
|
|
|
|
+ np.log(2 * np.pi * i0(kappa)))
|
|
|
|
vonmises = vonmises_gen(name='vonmises')
|
|
|
|
vonmises = vonmises_gen(name='vonmises')
|
|
|
|
vonmises_line = vonmises_gen(a=-np.pi, b=np.pi, name='vonmises_line')
|
|
|
|
vonmises_line = vonmises_gen(a=-np.pi, b=np.pi, name='vonmises_line')
|
|
|
|
|
|
|
|
|
|
|
|