Refactored magic

master
Per A Brodtkorb 8 years ago
parent 93026e27e9
commit a94a294c1d

@ -1,15 +1,59 @@
'''
"""
Created on 20. jan. 2011
@author: pab
'''
"""
import numpy as np
from numpy import exp, meshgrid
__all__ = ['peaks', 'humps', 'magic']
def _magic_odd_order(n):
ix = np.arange(n) + 1
J, I = np.meshgrid(ix, ix)
A = np.mod(I + J - (n + 3) / 2, n)
B = np.mod(I + 2 * J - 2, n)
M = n * A + B + 1
return M
def _magic_doubly_even_order(n):
M = np.arange(1, n * n + 1).reshape(n, n)
ix = np.mod(np.arange(n) + 1, 4) // 2
J, I = np.meshgrid(ix, ix)
iz = np.flatnonzero(I == J)
M.put(iz, n * n + 1 - M.flat[iz])
return M
def _magic_even_order(n):
p = n // 2
M0 = magic(p)
M = np.hstack((np.vstack((M0, M0 + 3 * p * p)),
np.vstack((M0 + 2 * p * p, M0 + p * p))))
if n > 2:
k = (n - 2) // 4
jvec = np.hstack((np.arange(k), np.arange(n - k + 1, n)))
for i in range(p):
for j in jvec:
temp = M[i][j]
M[i][j] = M[i + p][j]
M[i + p][j] = temp
i = k
j = 0
temp = M[i][j]
M[i][j] = M[i + p][j]
M[i + p][j] = temp
j = i
temp = M[i + p][j]
M[i + p][j] = M[i][j]
M[i][j] = temp
return M
def magic(n):
'''
"""
Return magic square for n of any orders > 2.
A magic square has the property that the sum of every row and column,
@ -38,54 +82,19 @@ def magic(n):
... [30, 5, 34, 12, 14, 16],
... [ 4, 36, 29, 13, 18, 11]])
True
'''
"""
if (n < 3):
raise ValueError('n must be greater than 2.')
if np.mod(n, 2) == 1: # odd order
ix = np.arange(n) + 1
J, I = np.meshgrid(ix, ix)
A = np.mod(I + J - (n + 3) / 2, n)
B = np.mod(I + 2 * J - 2, n)
M = n * A + B + 1
elif np.mod(n, 4) == 0: # doubly even order
M = np.arange(1, n * n + 1).reshape(n, n)
ix = np.mod(np.arange(n) + 1, 4) // 2
J, I = np.meshgrid(ix, ix)
iz = np.flatnonzero(I == J)
M.put(iz, n * n + 1 - M.flat[iz])
else: # singly even order
p = n // 2
M0 = magic(p)
M = np.hstack((np.vstack((M0, M0 + 3 * p * p)),
np.vstack((M0 + 2 * p * p, M0 + p * p))))
if n > 2:
k = (n - 2) // 4
Jvec = np.hstack((np.arange(k), np.arange(n - k + 1, n)))
for i in range(p):
for j in Jvec:
temp = M[i][j]
M[i][j] = M[i + p][j]
M[i + p][j] = temp
i = k
j = 0
temp = M[i][j]
M[i][j] = M[i + p][j]
M[i + p][j] = temp
j = i
temp = M[i + p][j]
M[i + p][j] = M[i][j]
M[i][j] = temp
return M
if np.mod(n, 2) == 1:
return _magic_odd_order(n)
elif np.mod(n, 4) == 0:
return _magic_doubly_even_order(n)
return _magic_even_order(n)
def peaks(x=None, y=None, n=51):
'''
"""
Return the "well" known MatLab (R) peaks function
evaluated in the [-3,3] x,y range
@ -96,7 +105,7 @@ def peaks(x=None, y=None, n=51):
h = plt.contourf(x,y,z)
'''
"""
if x is None:
x = np.linspace(-3, 3, n)
if y is None:
@ -112,7 +121,7 @@ def peaks(x=None, y=None, n=51):
def humps(x=None):
'''
"""
Computes a function that has three roots, and some humps.
Example
@ -122,7 +131,7 @@ def humps(x=None):
>>> y = humps(x)
h = plt.plot(x,y)
'''
"""
if x is None:
y = np.linspace(0, 1)
else:

Loading…
Cancel
Save