|
|
@ -1,15 +1,59 @@
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
Created on 20. jan. 2011
|
|
|
|
Created on 20. jan. 2011
|
|
|
|
|
|
|
|
|
|
|
|
@author: pab
|
|
|
|
@author: pab
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
from numpy import exp, meshgrid
|
|
|
|
from numpy import exp, meshgrid
|
|
|
|
__all__ = ['peaks', 'humps', 'magic']
|
|
|
|
__all__ = ['peaks', 'humps', 'magic']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _magic_odd_order(n):
|
|
|
|
|
|
|
|
ix = np.arange(n) + 1
|
|
|
|
|
|
|
|
J, I = np.meshgrid(ix, ix)
|
|
|
|
|
|
|
|
A = np.mod(I + J - (n + 3) / 2, n)
|
|
|
|
|
|
|
|
B = np.mod(I + 2 * J - 2, n)
|
|
|
|
|
|
|
|
M = n * A + B + 1
|
|
|
|
|
|
|
|
return M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _magic_doubly_even_order(n):
|
|
|
|
|
|
|
|
M = np.arange(1, n * n + 1).reshape(n, n)
|
|
|
|
|
|
|
|
ix = np.mod(np.arange(n) + 1, 4) // 2
|
|
|
|
|
|
|
|
J, I = np.meshgrid(ix, ix)
|
|
|
|
|
|
|
|
iz = np.flatnonzero(I == J)
|
|
|
|
|
|
|
|
M.put(iz, n * n + 1 - M.flat[iz])
|
|
|
|
|
|
|
|
return M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _magic_even_order(n):
|
|
|
|
|
|
|
|
p = n // 2
|
|
|
|
|
|
|
|
M0 = magic(p)
|
|
|
|
|
|
|
|
M = np.hstack((np.vstack((M0, M0 + 3 * p * p)),
|
|
|
|
|
|
|
|
np.vstack((M0 + 2 * p * p, M0 + p * p))))
|
|
|
|
|
|
|
|
if n > 2:
|
|
|
|
|
|
|
|
k = (n - 2) // 4
|
|
|
|
|
|
|
|
jvec = np.hstack((np.arange(k), np.arange(n - k + 1, n)))
|
|
|
|
|
|
|
|
for i in range(p):
|
|
|
|
|
|
|
|
for j in jvec:
|
|
|
|
|
|
|
|
temp = M[i][j]
|
|
|
|
|
|
|
|
M[i][j] = M[i + p][j]
|
|
|
|
|
|
|
|
M[i + p][j] = temp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i = k
|
|
|
|
|
|
|
|
j = 0
|
|
|
|
|
|
|
|
temp = M[i][j]
|
|
|
|
|
|
|
|
M[i][j] = M[i + p][j]
|
|
|
|
|
|
|
|
M[i + p][j] = temp
|
|
|
|
|
|
|
|
j = i
|
|
|
|
|
|
|
|
temp = M[i + p][j]
|
|
|
|
|
|
|
|
M[i + p][j] = M[i][j]
|
|
|
|
|
|
|
|
M[i][j] = temp
|
|
|
|
|
|
|
|
return M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def magic(n):
|
|
|
|
def magic(n):
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
Return magic square for n of any orders > 2.
|
|
|
|
Return magic square for n of any orders > 2.
|
|
|
|
|
|
|
|
|
|
|
|
A magic square has the property that the sum of every row and column,
|
|
|
|
A magic square has the property that the sum of every row and column,
|
|
|
@ -38,54 +82,19 @@ def magic(n):
|
|
|
|
... [30, 5, 34, 12, 14, 16],
|
|
|
|
... [30, 5, 34, 12, 14, 16],
|
|
|
|
... [ 4, 36, 29, 13, 18, 11]])
|
|
|
|
... [ 4, 36, 29, 13, 18, 11]])
|
|
|
|
True
|
|
|
|
True
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
if (n < 3):
|
|
|
|
if (n < 3):
|
|
|
|
raise ValueError('n must be greater than 2.')
|
|
|
|
raise ValueError('n must be greater than 2.')
|
|
|
|
|
|
|
|
|
|
|
|
if np.mod(n, 2) == 1: # odd order
|
|
|
|
if np.mod(n, 2) == 1:
|
|
|
|
ix = np.arange(n) + 1
|
|
|
|
return _magic_odd_order(n)
|
|
|
|
J, I = np.meshgrid(ix, ix)
|
|
|
|
elif np.mod(n, 4) == 0:
|
|
|
|
A = np.mod(I + J - (n + 3) / 2, n)
|
|
|
|
return _magic_doubly_even_order(n)
|
|
|
|
B = np.mod(I + 2 * J - 2, n)
|
|
|
|
return _magic_even_order(n)
|
|
|
|
M = n * A + B + 1
|
|
|
|
|
|
|
|
elif np.mod(n, 4) == 0: # doubly even order
|
|
|
|
|
|
|
|
M = np.arange(1, n * n + 1).reshape(n, n)
|
|
|
|
|
|
|
|
ix = np.mod(np.arange(n) + 1, 4) // 2
|
|
|
|
|
|
|
|
J, I = np.meshgrid(ix, ix)
|
|
|
|
|
|
|
|
iz = np.flatnonzero(I == J)
|
|
|
|
|
|
|
|
M.put(iz, n * n + 1 - M.flat[iz])
|
|
|
|
|
|
|
|
else: # singly even order
|
|
|
|
|
|
|
|
p = n // 2
|
|
|
|
|
|
|
|
M0 = magic(p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
M = np.hstack((np.vstack((M0, M0 + 3 * p * p)),
|
|
|
|
|
|
|
|
np.vstack((M0 + 2 * p * p, M0 + p * p))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if n > 2:
|
|
|
|
|
|
|
|
k = (n - 2) // 4
|
|
|
|
|
|
|
|
Jvec = np.hstack((np.arange(k), np.arange(n - k + 1, n)))
|
|
|
|
|
|
|
|
for i in range(p):
|
|
|
|
|
|
|
|
for j in Jvec:
|
|
|
|
|
|
|
|
temp = M[i][j]
|
|
|
|
|
|
|
|
M[i][j] = M[i + p][j]
|
|
|
|
|
|
|
|
M[i + p][j] = temp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i = k
|
|
|
|
|
|
|
|
j = 0
|
|
|
|
|
|
|
|
temp = M[i][j]
|
|
|
|
|
|
|
|
M[i][j] = M[i + p][j]
|
|
|
|
|
|
|
|
M[i + p][j] = temp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
j = i
|
|
|
|
|
|
|
|
temp = M[i + p][j]
|
|
|
|
|
|
|
|
M[i + p][j] = M[i][j]
|
|
|
|
|
|
|
|
M[i][j] = temp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def peaks(x=None, y=None, n=51):
|
|
|
|
def peaks(x=None, y=None, n=51):
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
Return the "well" known MatLab (R) peaks function
|
|
|
|
Return the "well" known MatLab (R) peaks function
|
|
|
|
evaluated in the [-3,3] x,y range
|
|
|
|
evaluated in the [-3,3] x,y range
|
|
|
|
|
|
|
|
|
|
|
@ -96,7 +105,7 @@ def peaks(x=None, y=None, n=51):
|
|
|
|
|
|
|
|
|
|
|
|
h = plt.contourf(x,y,z)
|
|
|
|
h = plt.contourf(x,y,z)
|
|
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
if x is None:
|
|
|
|
if x is None:
|
|
|
|
x = np.linspace(-3, 3, n)
|
|
|
|
x = np.linspace(-3, 3, n)
|
|
|
|
if y is None:
|
|
|
|
if y is None:
|
|
|
@ -112,7 +121,7 @@ def peaks(x=None, y=None, n=51):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def humps(x=None):
|
|
|
|
def humps(x=None):
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
Computes a function that has three roots, and some humps.
|
|
|
|
Computes a function that has three roots, and some humps.
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
Example
|
|
|
@ -122,7 +131,7 @@ def humps(x=None):
|
|
|
|
>>> y = humps(x)
|
|
|
|
>>> y = humps(x)
|
|
|
|
|
|
|
|
|
|
|
|
h = plt.plot(x,y)
|
|
|
|
h = plt.plot(x,y)
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
if x is None:
|
|
|
|
if x is None:
|
|
|
|
y = np.linspace(0, 1)
|
|
|
|
y = np.linspace(0, 1)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|