|
|
|
@ -159,7 +159,7 @@ class _KDE(object):
|
|
|
|
|
self.args = args
|
|
|
|
|
return self._eval_grid_fun(self._eval_grid_fast, *args, **kwds)
|
|
|
|
|
|
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
|
|
def _eval_grid_fast(self, *args, **kwds):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def eval_grid(self, *args, **kwds):
|
|
|
|
@ -189,7 +189,7 @@ class _KDE(object):
|
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
|
pass
|
|
|
|
|
def _eval_grid_fun(self, eval_grd, *args, **kwds):
|
|
|
|
|
f = eval_grd(*args)
|
|
|
|
|
f = eval_grd(*args, **kwds)
|
|
|
|
|
if kwds.get('output', 'value') == 'value':
|
|
|
|
|
return f
|
|
|
|
|
else:
|
|
|
|
@ -223,7 +223,7 @@ class _KDE(object):
|
|
|
|
|
self.d)
|
|
|
|
|
raise ValueError(msg)
|
|
|
|
|
return points
|
|
|
|
|
def eval_points(self, points):
|
|
|
|
|
def eval_points(self, points, r=0):
|
|
|
|
|
"""Evaluate the estimated pdf on a set of points.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
@ -244,9 +244,9 @@ class _KDE(object):
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
points = self._check_shape(points)
|
|
|
|
|
return self._eval_points(points)
|
|
|
|
|
return self._eval_points(points, r=r)
|
|
|
|
|
|
|
|
|
|
def _eval_points(self, points):
|
|
|
|
|
def _eval_points(self, points, r=0):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
__call__ = eval_grid
|
|
|
|
@ -624,7 +624,7 @@ class KDE(_KDE):
|
|
|
|
|
self._norm_factor = deth * self.n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
|
|
def _eval_grid_fast(self, *args, **kwds):
|
|
|
|
|
X = np.vstack(args)
|
|
|
|
|
d, inc = X.shape
|
|
|
|
|
dx = X[:, 1] - X[:, 0]
|
|
|
|
@ -645,33 +645,38 @@ class KDE(_KDE):
|
|
|
|
|
Xn = np.dot(self.inv_hs, np.vstack(Xnc))
|
|
|
|
|
|
|
|
|
|
# Obtain the kernel weights.
|
|
|
|
|
r = kwds.get('r', 0)
|
|
|
|
|
if r==0:
|
|
|
|
|
kw = self.kernel(Xn) / (self._norm_factor * self.kernel.norm_factor(d, self.n))
|
|
|
|
|
else:
|
|
|
|
|
kw = np.vstack(Xnc) ** r * self.kernel(Xn) / (self._norm_factor * self.kernel.norm_factor(d, self.n))
|
|
|
|
|
kw.shape = shape0
|
|
|
|
|
kw = np.fft.ifftshift(kw)
|
|
|
|
|
fftn = np.fft.fftn
|
|
|
|
|
ifftn = np.fft.ifftn
|
|
|
|
|
|
|
|
|
|
y = kwds.get('y', 1)
|
|
|
|
|
# Find the binned kernel weights, c.
|
|
|
|
|
c = gridcount(self.dataset, X)
|
|
|
|
|
|
|
|
|
|
c = gridcount(self.dataset, X, y=y)
|
|
|
|
|
# Perform the convolution.
|
|
|
|
|
z = np.real(ifftn(fftn(c, s=nfft) * fftn(kw)))
|
|
|
|
|
|
|
|
|
|
ix = (slice(0, inc),)*d
|
|
|
|
|
return z[ix] * (z[ix] > 0.0)
|
|
|
|
|
|
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
|
def _eval_grid(self, *args, **kwds):
|
|
|
|
|
|
|
|
|
|
grd = meshgrid(*args) if len(args) > 1 else list(args)
|
|
|
|
|
shape0 = grd[0].shape
|
|
|
|
|
d = len(grd)
|
|
|
|
|
for i in range(d):
|
|
|
|
|
grd[i] = grd[i].ravel()
|
|
|
|
|
f = self.eval_points(np.vstack(grd))
|
|
|
|
|
r = kwds.get('r', 0)
|
|
|
|
|
f = self.eval_points(np.vstack(grd), r=r)
|
|
|
|
|
return f.reshape(shape0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _eval_points(self, points):
|
|
|
|
|
def _eval_points(self, points, r=0):
|
|
|
|
|
"""Evaluate the estimated pdf on a set of points.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
@ -693,19 +698,23 @@ class KDE(_KDE):
|
|
|
|
|
d, m = points.shape
|
|
|
|
|
|
|
|
|
|
result = np.zeros((m,))
|
|
|
|
|
if r==0:
|
|
|
|
|
fun = lambda xi : 1
|
|
|
|
|
else:
|
|
|
|
|
fun = lambda xi : xi ** r
|
|
|
|
|
|
|
|
|
|
if m >= self.n:
|
|
|
|
|
# there are more points than data, so loop over data
|
|
|
|
|
for i in range(self.n):
|
|
|
|
|
diff = self.dataset[:, i, np.newaxis] - points
|
|
|
|
|
tdiff = np.dot(self.inv_hs / self._lambda[i], diff)
|
|
|
|
|
result += self.kernel(tdiff) / self._lambda[i] ** d
|
|
|
|
|
result += fun(diff) * self.kernel(tdiff) / self._lambda[i] ** d
|
|
|
|
|
else:
|
|
|
|
|
# loop over points
|
|
|
|
|
for i in range(m):
|
|
|
|
|
diff = self.dataset - points[:, i, np.newaxis]
|
|
|
|
|
tdiff = np.dot(self.inv_hs, diff / self._lambda[np.newaxis, :])
|
|
|
|
|
tmp = self.kernel(tdiff) / self._lambda ** d
|
|
|
|
|
tmp = fun(diff) * self.kernel(tdiff) / self._lambda ** d
|
|
|
|
|
result[i] = tmp.sum(axis= -1)
|
|
|
|
|
|
|
|
|
|
result /= (self._norm_factor * self.kernel.norm_factor(d, self.n))
|
|
|
|
@ -2194,7 +2203,7 @@ def bitget(int_type, offset):
|
|
|
|
|
return np.bitwise_and(int_type, 1 << offset) >> offset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gridcount(data, X, use_sparse=False):
|
|
|
|
|
def gridcount(data, X, y=1):
|
|
|
|
|
'''
|
|
|
|
|
Returns D-dimensional histogram using linear binning.
|
|
|
|
|
|
|
|
|
@ -2253,6 +2262,7 @@ def gridcount(data, X, use_sparse=False):
|
|
|
|
|
'''
|
|
|
|
|
dat = np.atleast_2d(data)
|
|
|
|
|
x = np.atleast_2d(X)
|
|
|
|
|
y = np.atleast_1d(y).ravel()
|
|
|
|
|
d = dat.shape[0]
|
|
|
|
|
d1, inc = x.shape
|
|
|
|
|
|
|
|
|
@ -2269,6 +2279,7 @@ def gridcount(data, X, use_sparse=False):
|
|
|
|
|
raise ValueError('X does not include whole range of the data!')
|
|
|
|
|
|
|
|
|
|
csiz = np.repeat(inc, d)
|
|
|
|
|
use_sparse = False
|
|
|
|
|
if use_sparse:
|
|
|
|
|
acfun = accumsum # faster than accum
|
|
|
|
|
else:
|
|
|
|
@ -2279,8 +2290,9 @@ def gridcount(data, X, use_sparse=False):
|
|
|
|
|
abs = np.abs
|
|
|
|
|
if d == 1:
|
|
|
|
|
x.shape = (-1,)
|
|
|
|
|
c = np.asarray((acfun(binx, (x[binx + 1] - dat), size=(inc, )) +
|
|
|
|
|
acfun(binx+1, (dat - x[binx]), size=(inc, ))) / w).ravel()
|
|
|
|
|
c = np.asarray((acfun(binx, (x[binx + 1] - dat) * y, size=(inc, )) +
|
|
|
|
|
acfun(binx+1, (dat - x[binx]) * y, size=(inc, ))) / w).ravel()
|
|
|
|
|
|
|
|
|
|
# elif d == 2:
|
|
|
|
|
# b2 = binx[1]
|
|
|
|
|
# b1 = binx[0]
|
|
|
|
@ -2294,9 +2306,6 @@ def gridcount(data, X, use_sparse=False):
|
|
|
|
|
else: # % d>2
|
|
|
|
|
|
|
|
|
|
Nc = csiz.prod()
|
|
|
|
|
# if use_sparse:
|
|
|
|
|
# c = sparse.csr_matrix((Nc,1))
|
|
|
|
|
# else:
|
|
|
|
|
c = np.zeros((Nc,))
|
|
|
|
|
|
|
|
|
|
fact2 = np.asarray(np.reshape(inc * np.arange(d), (d, -1)), dtype=int)
|
|
|
|
@ -2314,9 +2323,8 @@ def gridcount(data, X, use_sparse=False):
|
|
|
|
|
b1 = np.sum((binx + bt0[one]) * fact1, axis=0) #linear index to c
|
|
|
|
|
bt2 = bt0[two] + fact2
|
|
|
|
|
b2 = binx + bt2 # linear index to X
|
|
|
|
|
c += acfun(b1, abs(np.prod(X1[b2] - dat, axis=0)), size=(Nc,))
|
|
|
|
|
# if use_sparse:
|
|
|
|
|
# c = c.toarray().ravel()
|
|
|
|
|
c += acfun(b1, abs(np.prod(X1[b2] - dat, axis=0)) * y, size=(Nc,))
|
|
|
|
|
|
|
|
|
|
c = np.reshape(c/w , csiz, order='F')
|
|
|
|
|
|
|
|
|
|
T = range(d)
|
|
|
|
|