|
|
@ -1,8 +1,8 @@
|
|
|
|
C Version 1994-X-18
|
|
|
|
C Version 1994-X-18
|
|
|
|
|
|
|
|
|
|
|
|
C This is a new version of WAMP program computing crest-trough wavelength
|
|
|
|
C This is a new version of WAMP program computing crest-trough wavelength
|
|
|
|
C and amplitude density.
|
|
|
|
C and amplitude density.
|
|
|
|
C
|
|
|
|
C
|
|
|
|
C revised pab 2007
|
|
|
|
C revised pab 2007
|
|
|
|
C -moved all common blocks into modules
|
|
|
|
C -moved all common blocks into modules
|
|
|
|
C -renamed from minmax to sp2mmpdfreg + fixed some bugs
|
|
|
|
C -renamed from minmax to sp2mmpdfreg + fixed some bugs
|
|
|
@ -64,8 +64,9 @@ Cf2py integer, optional :: NIT = 2
|
|
|
|
Cf2py real*8, intent(out), depend(Nu,Nv) :: UVdens
|
|
|
|
Cf2py real*8, intent(out), depend(Nu,Nv) :: UVdens
|
|
|
|
Cf2py depend(Ng) Xg
|
|
|
|
Cf2py depend(Ng) Xg
|
|
|
|
Cf2py depend(Nt,5) COV
|
|
|
|
Cf2py depend(Nt,5) COV
|
|
|
|
real*8 Q0,SQ0,Q1,SQ1, U,V,VV, XL0, XL2, XL4
|
|
|
|
real*8 Q0,SQ0,Q1,SQ1, U,V, XL0, XL2, XL4
|
|
|
|
REAL*8 VDERI, CDER,SDER, DER, CONST1, F, HHHH, FM, VALUE
|
|
|
|
REAL*8 VDERI, DER, F, HHHH, VALUE
|
|
|
|
|
|
|
|
C REAL*8 VV, CDER,SDER, CONST1, FM
|
|
|
|
C INTEGER, PARAMETER :: MMAX = 5, NMAX = 101, RDIM = 10201
|
|
|
|
C INTEGER, PARAMETER :: MMAX = 5, NMAX = 101, RDIM = 10201
|
|
|
|
REAL*8, DIMENSION(NMAX) :: HHT,VT,UT,Vdd,Udd
|
|
|
|
REAL*8, DIMENSION(NMAX) :: HHT,VT,UT,Vdd,Udd
|
|
|
|
REAL*8, DIMENSION(RDIM) :: R,R1,R2,R3
|
|
|
|
REAL*8, DIMENSION(RDIM) :: R,R1,R2,R3
|
|
|
@ -79,14 +80,14 @@ C DIMENSION COV(5*NMAX),R(RDIM),R1(RDIM),R2(RDIM),R3(RDIM)
|
|
|
|
|
|
|
|
|
|
|
|
C
|
|
|
|
C
|
|
|
|
C The program computes the joint density of maximum the following minimum
|
|
|
|
C The program computes the joint density of maximum the following minimum
|
|
|
|
C and the distance between Max and min for a zero-mean stationary
|
|
|
|
C and the distance between Max and min for a zero-mean stationary
|
|
|
|
C Gaussian process with covariance function defined explicitely with 4
|
|
|
|
C Gaussian process with covariance function defined explicitely with 4
|
|
|
|
C derivatives. The process should be normalized so that the first and
|
|
|
|
C derivatives. The process should be normalized so that the first and
|
|
|
|
C the second spectral moments are equal to 1. The values of Max are taken
|
|
|
|
C the second spectral moments are equal to 1. The values of Max are taken
|
|
|
|
C as the nodes at Hermite-Quadrature and then integrated out so that
|
|
|
|
C as the nodes at Hermite-Quadrature and then integrated out so that
|
|
|
|
C the output is a joint density of wavelength T and amplitude H=Max-min.
|
|
|
|
C the output is a joint density of wavelength T and amplitude H=Max-min.
|
|
|
|
C The Max values are defined by subroutine Gauss_M with the accuracy
|
|
|
|
C The Max values are defined by subroutine Gauss_M with the accuracy
|
|
|
|
C input epsu. The principle is that the integral of the marginal density
|
|
|
|
C input epsu. The principle is that the integral of the marginal density
|
|
|
|
C of f_Max is computed with sufficient accuracy.
|
|
|
|
C of f_Max is computed with sufficient accuracy.
|
|
|
|
C
|
|
|
|
C
|
|
|
|
REAL*8, DIMENSION(NMAX) :: B0,DB0,DDB0,B1,DB1,DDB1,DB2,DDB2
|
|
|
|
REAL*8, DIMENSION(NMAX) :: B0,DB0,DDB0,B1,DB1,DDB1,DB2,DDB2
|
|
|
@ -96,13 +97,13 @@ C DIMENSION B1(NMAX),DB1(NMAX),DDB1(NMAX)
|
|
|
|
C DIMENSION DB2(NMAX),DDB2(NMAX)
|
|
|
|
C DIMENSION DB2(NMAX),DDB2(NMAX)
|
|
|
|
C DIMENSION Q(NMAX),SQ(NMAX),VDER(NMAX),DBI(NMAX),BI(NMAX)
|
|
|
|
C DIMENSION Q(NMAX),SQ(NMAX),VDER(NMAX),DBI(NMAX),BI(NMAX)
|
|
|
|
INTEGER :: J,I,I1,I2,I3,IU, IV,N, NNIT, INF
|
|
|
|
INTEGER :: J,I,I1,I2,I3,IU, IV,N, NNIT, INF
|
|
|
|
INTEGER :: fffff
|
|
|
|
C INTEGER :: fffff
|
|
|
|
C REAL*8 EPS0
|
|
|
|
C REAL*8 EPS0
|
|
|
|
C INTEGER III01,III11,III21,III31,III41,III51
|
|
|
|
C INTEGER III01,III11,III21,III31,III41,III51
|
|
|
|
C *,III61,III71,III81,III91,III101 , III0
|
|
|
|
C *,III61,III71,III81,III91,III101 , III0
|
|
|
|
C COMMON/CHECK1/III01,III11,III21,III31,III41,III51
|
|
|
|
C COMMON/CHECK1/III01,III11,III21,III31,III41,III51
|
|
|
|
C *,III61,III71,III81,III91,III101
|
|
|
|
C *,III61,III71,III81,III91,III101
|
|
|
|
C COMMON/CHECKQ/III0
|
|
|
|
C COMMON/CHECKQ/III0
|
|
|
|
C COMMON /EPS/ EPS,EPSS,CEPSS
|
|
|
|
C COMMON /EPS/ EPS,EPSS,CEPSS
|
|
|
|
|
|
|
|
|
|
|
|
C
|
|
|
|
C
|
|
|
@ -115,7 +116,7 @@ C
|
|
|
|
! OPEN(UNIT=10,FILE='Maxmin.out')
|
|
|
|
! OPEN(UNIT=10,FILE='Maxmin.out')
|
|
|
|
! OPEN(UNIT=11,FILE='Maxmin.log')
|
|
|
|
! OPEN(UNIT=11,FILE='Maxmin.log')
|
|
|
|
c
|
|
|
|
c
|
|
|
|
c OBS. we are using the variables R,R1,R2 R3 as a temporary storage
|
|
|
|
c OBS. we are using the variables R,R1,R2 R3 as a temporary storage
|
|
|
|
C for transformation g of the process.
|
|
|
|
C for transformation g of the process.
|
|
|
|
|
|
|
|
|
|
|
|
N = Nt
|
|
|
|
N = Nt
|
|
|
@ -136,22 +137,22 @@ C CALL INITLEVELS(Ulev,NU,Vlev,NV,T,HHT,Nt,R1,R2,NG)
|
|
|
|
|
|
|
|
|
|
|
|
DO IV=1,Nv
|
|
|
|
DO IV=1,Nv
|
|
|
|
V=Vlev(IV)
|
|
|
|
V=Vlev(IV)
|
|
|
|
CALL TRANSF(NG,V,Xg,Tg,VALUE,DER)
|
|
|
|
CALL TRANSF(NG,V,Xg,Tg,VALUE,DER)
|
|
|
|
VT(IV)=VALUE
|
|
|
|
VT(IV)=VALUE
|
|
|
|
Vdd(IV)=DER
|
|
|
|
Vdd(IV)=DER
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
DO IU=1,Nu
|
|
|
|
DO IU=1,Nu
|
|
|
|
U = Ulev(IU)
|
|
|
|
U = Ulev(IU)
|
|
|
|
CALL TRANSF(NG,U,Xg,Tg,VALUE,DER)
|
|
|
|
CALL TRANSF(NG,U,Xg,Tg,VALUE,DER)
|
|
|
|
UT(IU) = VALUE
|
|
|
|
UT(IU) = VALUE
|
|
|
|
Udd(IU) = DER
|
|
|
|
Udd(IU) = DER
|
|
|
|
do IV=1,Nv
|
|
|
|
do IV=1,Nv
|
|
|
|
UVdens(IU,IV)=0.0d0
|
|
|
|
UVdens(IU,IV)=0.0d0
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
|
|
|
|
CALL COVG(XL0,XL2,XL4,R1,R2,R3,COV,T,Nt)
|
|
|
|
CALL COVG(XL0,XL2,XL4,R1,R2,R3,COV,T,Nt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q0=XL4
|
|
|
|
Q0=XL4
|
|
|
|
IF (Q0.le.1.0D0+EPS) then
|
|
|
|
IF (Q0.le.1.0D0+EPS) then
|
|
|
@ -169,7 +170,7 @@ C CALL INITLEVELS(Ulev,NU,Vlev,NV,T,HHT,Nt,R1,R2,NG)
|
|
|
|
B0(I) =-COV(I,3)
|
|
|
|
B0(I) =-COV(I,3)
|
|
|
|
DB0(I) =-COV(I,4)
|
|
|
|
DB0(I) =-COV(I,4)
|
|
|
|
DDB0(I)=-COV(I,5)
|
|
|
|
DDB0(I)=-COV(I,5)
|
|
|
|
|
|
|
|
|
|
|
|
B1(I) =COV(I,1)+COV(I,3)*(XL2/XL4)
|
|
|
|
B1(I) =COV(I,1)+COV(I,3)*(XL2/XL4)
|
|
|
|
DB1(I) =COV(I,2)+COV(I,4)*(XL2/XL4)
|
|
|
|
DB1(I) =COV(I,2)+COV(I,4)*(XL2/XL4)
|
|
|
|
DDB1(I)=COV(I,3)+XL2*(COV(I,5)/XL4)
|
|
|
|
DDB1(I)=COV(I,3)+XL2*(COV(I,5)/XL4)
|
|
|
@ -180,8 +181,8 @@ C
|
|
|
|
Q(I)=XL0 - COV(I,2)*(COV(I,2)/XL2) - B0(I)*(B0(I)/Q0)
|
|
|
|
Q(I)=XL0 - COV(I,2)*(COV(I,2)/XL2) - B0(I)*(B0(I)/Q0)
|
|
|
|
1 -B1(I)*(B1(I)/Q1)
|
|
|
|
1 -B1(I)*(B1(I)/Q1)
|
|
|
|
VDER(I)=XL4 - (COV(I,4)*COV(I,4))/XL2 - (DDB0(I)*DDB0(I))/Q0
|
|
|
|
VDER(I)=XL4 - (COV(I,4)*COV(I,4))/XL2 - (DDB0(I)*DDB0(I))/Q0
|
|
|
|
1 - (DDB1(I)*DDB1(I))/Q1
|
|
|
|
1 - (DDB1(I)*DDB1(I))/Q1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C
|
|
|
|
C
|
|
|
|
C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0))
|
|
|
|
C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0))
|
|
|
@ -193,84 +194,84 @@ C
|
|
|
|
DDB2(i)=0.0d0
|
|
|
|
DDB2(i)=0.0d0
|
|
|
|
else
|
|
|
|
else
|
|
|
|
SQ(I)=SQRT(Q(I))
|
|
|
|
SQ(I)=SQRT(Q(I))
|
|
|
|
C
|
|
|
|
C
|
|
|
|
C VDER(I) contains Var(X''(T(i))|X'(0),X''(0),X(0),X(T(i))
|
|
|
|
C VDER(I) contains Var(X''(T(i))|X'(0),X''(0),X(0),X(T(i))
|
|
|
|
C
|
|
|
|
C
|
|
|
|
|
|
|
|
|
|
|
|
VDER(I)=VDER(I) - (DDB2(I)*DDB2(I))/Q(I)
|
|
|
|
VDER(I)=VDER(I) - (DDB2(I)*DDB2(I))/Q(I)
|
|
|
|
end if
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
|
|
c10 CONTINUE
|
|
|
|
c10 CONTINUE
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
DO I=1,Nt
|
|
|
|
DO I=1,Nt
|
|
|
|
DO J=1,Nt
|
|
|
|
DO J=1,Nt
|
|
|
|
C
|
|
|
|
C
|
|
|
|
C R1 contains Cov(X(T(I)),X'(T(J))|X'(0),X''(0),X(0))
|
|
|
|
C R1 contains Cov(X(T(I)),X'(T(J))|X'(0),X''(0),X(0))
|
|
|
|
C
|
|
|
|
C
|
|
|
|
R1(J+(I-1)*N) = R1(J+(I-1)*N) - COV(I,2)*(COV(J,3)/XL2)
|
|
|
|
R1(J+(I-1)*N) = R1(J+(I-1)*N) - COV(I,2)*(COV(J,3)/XL2)
|
|
|
|
1 - (B0(I)*DB0(J)/Q0) - (B1(I)*DB1(J)/Q1)
|
|
|
|
1 - (B0(I)*DB0(J)/Q0) - (B1(I)*DB1(J)/Q1)
|
|
|
|
|
|
|
|
|
|
|
|
C
|
|
|
|
C
|
|
|
|
C R2 contains Cov(X'(T(I)),X'(T(J))|X'(0),X''(0),X(0))
|
|
|
|
C R2 contains Cov(X'(T(I)),X'(T(J))|X'(0),X''(0),X(0))
|
|
|
|
C
|
|
|
|
C
|
|
|
|
R2(J+(I-1)*N) = -R2(J+(I-1)*N) - COV(I,3)*(COV(J,3)/XL2)
|
|
|
|
R2(J+(I-1)*N) = -R2(J+(I-1)*N) - COV(I,3)*(COV(J,3)/XL2)
|
|
|
|
1 - DB0(I)*DB0(J)/Q0 - DB1(I)*(DB1(J)/Q1)
|
|
|
|
1 - DB0(I)*DB0(J)/Q0 - DB1(I)*(DB1(J)/Q1)
|
|
|
|
C
|
|
|
|
C
|
|
|
|
C R3 contains Cov(X''(T(I)),X'(T(J))|X'(0),X''(0),X(0))
|
|
|
|
C R3 contains Cov(X''(T(I)),X'(T(J))|X'(0),X''(0),X(0))
|
|
|
|
C
|
|
|
|
C
|
|
|
|
R3(J+(I-1)*N) = R3(J+(I-1)*N) - COV(I,4)*(COV(J,3)/XL2)
|
|
|
|
R3(J+(I-1)*N) = R3(J+(I-1)*N) - COV(I,4)*(COV(J,3)/XL2)
|
|
|
|
1 - DB0(J)*(DDB0(I)/Q0) - DDB1(I)*(DB1(J)/Q1)
|
|
|
|
1 - DB0(J)*(DDB0(I)/Q0) - DDB1(I)*(DB1(J)/Q1)
|
|
|
|
c15 CONTINUE
|
|
|
|
c15 CONTINUE
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
|
|
|
|
C The initiations are finished and we are beginning with 3 loops
|
|
|
|
C The initiations are finished and we are beginning with 3 loops
|
|
|
|
C on T=T(I), U=Ulevels(IU), V=Ulevels(IV), U>V.
|
|
|
|
C on T=T(I), U=Ulevels(IU), V=Ulevels(IV), U>V.
|
|
|
|
|
|
|
|
|
|
|
|
DO I=1,Nt
|
|
|
|
DO I=1,Nt
|
|
|
|
|
|
|
|
|
|
|
|
NNIT=NIT
|
|
|
|
NNIT=NIT
|
|
|
|
IF (Q(I).LE.EPS) GO TO 20
|
|
|
|
IF (Q(I).LE.EPS) GO TO 20
|
|
|
|
|
|
|
|
|
|
|
|
DO I1=1,I
|
|
|
|
DO I1=1,I
|
|
|
|
DB2(I1)=R1(I1+(I-1)*N)
|
|
|
|
DB2(I1)=R1(I1+(I-1)*N)
|
|
|
|
|
|
|
|
|
|
|
|
C Cov(X'(T(I1)),X(T(i))|X'(0),X''(0),X(0))
|
|
|
|
C Cov(X'(T(I1)),X(T(i))|X'(0),X''(0),X(0))
|
|
|
|
C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0))
|
|
|
|
C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0))
|
|
|
|
|
|
|
|
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
|
|
|
|
DO I3=1,I
|
|
|
|
DO I3=1,I
|
|
|
|
DBI(I3) = R3(I3+(I-1)*N) - (DDB2(I)*DB2(I3)/Q(I))
|
|
|
|
DBI(I3) = R3(I3+(I-1)*N) - (DDB2(I)*DB2(I3)/Q(I))
|
|
|
|
BI(I3) = R2(I3+(I-1)*N) - (DB2(I)*DB2(I3)/Q(I))
|
|
|
|
BI(I3) = R2(I3+(I-1)*N) - (DB2(I)*DB2(I3)/Q(I))
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
DO I3=1,I-1
|
|
|
|
DO I3=1,I-1
|
|
|
|
AI(I3)=0.0d0
|
|
|
|
AI(I3)=0.0d0
|
|
|
|
AI(I3+I-1)=DB0(I3)/SQ0
|
|
|
|
AI(I3+I-1)=DB0(I3)/SQ0
|
|
|
|
AI(I3+2*(I-1))=DB1(I3)/SQ1
|
|
|
|
AI(I3+2*(I-1))=DB1(I3)/SQ1
|
|
|
|
AI(I3+3*(I-1))=DB2(I3)/SQ(I)
|
|
|
|
AI(I3+3*(I-1))=DB2(I3)/SQ(I)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
VDERI=VDER(I)
|
|
|
|
VDERI=VDER(I)
|
|
|
|
DAI(1)=0.0d0
|
|
|
|
DAI(1)=0.0d0
|
|
|
|
DAI(2)=DDB0(I)/SQ0
|
|
|
|
DAI(2)=DDB0(I)/SQ0
|
|
|
|
DAI(3)=DDB1(I)/SQ1
|
|
|
|
DAI(3)=DDB1(I)/SQ1
|
|
|
|
DAI(4)=DDB2(I)/SQ(I)
|
|
|
|
DAI(4)=DDB2(I)/SQ(I)
|
|
|
|
AA(1,1)=DB0(I)/SQ0
|
|
|
|
AA(1,1)=DB0(I)/SQ0
|
|
|
|
AA(1,2)=DB1(I)/SQ1
|
|
|
|
AA(1,2)=DB1(I)/SQ1
|
|
|
|
AA(1,3)=DB2(I)/SQ(I)
|
|
|
|
AA(1,3)=DB2(I)/SQ(I)
|
|
|
|
AA(2,1)=XL2/SQ0
|
|
|
|
AA(2,1)=XL2/SQ0
|
|
|
|
AA(2,2)=SQ1
|
|
|
|
AA(2,2)=SQ1
|
|
|
|
AA(2,3)=0.0d0
|
|
|
|
AA(2,3)=0.0d0
|
|
|
|
AA(3,1)=B0(I)/SQ0
|
|
|
|
AA(3,1)=B0(I)/SQ0
|
|
|
|
AA(3,2)=B1(I)/SQ1
|
|
|
|
AA(3,2)=B1(I)/SQ1
|
|
|
|
AA(3,3)=SQ(I)
|
|
|
|
AA(3,3)=SQ(I)
|
|
|
|
IF (BI(I).LE.EPS) NNIT=0
|
|
|
|
IF (BI(I).LE.EPS) NNIT=0
|
|
|
|
IF (NNIT.GT.1) THEN
|
|
|
|
IF (NNIT.GT.1) THEN
|
|
|
|
IF(I.LT.1) GO TO 41
|
|
|
|
IF(I.LT.1) GO TO 41
|
|
|
|
DO I1=1,I-1
|
|
|
|
DO I1=1,I-1
|
|
|
|
DO I2=1,I-1
|
|
|
|
DO I2=1,I-1
|
|
|
|
C R contains Cov(X'(T(I1)),X'(T(I2))|X'(0),X''(0),X(0),X(I))
|
|
|
|
C R contains Cov(X'(T(I1)),X'(T(I2))|X'(0),X''(0),X(0),X(I))
|
|
|
|
R(I2+(I1-1)*(I-1))=R2(I2+(I1-1)*N)-(DB2(I1)*DB2(I2)/Q(I))
|
|
|
|
R(I2+(I1-1)*(I-1))=R2(I2+(I1-1)*N)-(DB2(I1)*DB2(I2)/Q(I))
|
|
|
|
|
|
|
|
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
@ -283,27 +284,27 @@ C Here the covariance of the problem would be initiated
|
|
|
|
Print *,' Laps to go:',Nt-I+1
|
|
|
|
Print *,' Laps to go:',Nt-I+1
|
|
|
|
DO IV=1,Nv
|
|
|
|
DO IV=1,Nv
|
|
|
|
V=VT(IV)
|
|
|
|
V=VT(IV)
|
|
|
|
! IF (ABS(V).GT.5.0D0) GO TO 80
|
|
|
|
! IF (ABS(V).GT.5.0D0) GO TO 80
|
|
|
|
IF (Vdd(IV).LT.EPS0) GO TO 80
|
|
|
|
IF (Vdd(IV).LT.EPS0) GO TO 80
|
|
|
|
DO IU=1,Nu
|
|
|
|
DO IU=1,Nu
|
|
|
|
U=UT(IU)
|
|
|
|
U=UT(IU)
|
|
|
|
IF (U.LE.V) go to 60
|
|
|
|
IF (U.LE.V) go to 60
|
|
|
|
! IF (ABS(U).GT.5.0D0) GO TO 60
|
|
|
|
! IF (ABS(U).GT.5.0D0) GO TO 60
|
|
|
|
IF (Udd(IU).LT.EPS0) GO TO 60
|
|
|
|
IF (Udd(IU).LT.EPS0) GO TO 60
|
|
|
|
BB(1)=0.0d0
|
|
|
|
BB(1)=0.0d0
|
|
|
|
BB(2)=U
|
|
|
|
BB(2)=U
|
|
|
|
BB(3)=V
|
|
|
|
BB(3)=V
|
|
|
|
! if (IV.EQ.2.AND.IU.EQ.1) THEN
|
|
|
|
! if (IV.EQ.2.AND.IU.EQ.1) THEN
|
|
|
|
! fffff = 10
|
|
|
|
! fffff = 10
|
|
|
|
! endif
|
|
|
|
! endif
|
|
|
|
|
|
|
|
|
|
|
|
CALL MREG(F,R,BI,DBI,AA,BB,AI,DAI,VDERI,3,I-1,NNIT,INF)
|
|
|
|
CALL MREG(F,R,BI,DBI,AA,BB,AI,DAI,VDERI,3,I-1,NNIT,INF)
|
|
|
|
INF=1
|
|
|
|
INF=1
|
|
|
|
UVdens(IU,IV) = UVdens(IU,IV) + Udd(IU)*Vdd(IV)*HHT(I)*F
|
|
|
|
UVdens(IU,IV) = UVdens(IU,IV) + Udd(IU)*Vdd(IV)*HHT(I)*F
|
|
|
|
|
|
|
|
|
|
|
|
! if (F.GT.0.01.AND.U.GT.2.AND.V.LT.-2) THEN
|
|
|
|
! if (F.GT.0.01.AND.U.GT.2.AND.V.LT.-2) THEN
|
|
|
|
! if (N-I+1 .eq. 38.and.IV.EQ.26.AND.IU.EQ.16) THEN
|
|
|
|
! if (N-I+1 .eq. 38.and.IV.EQ.26.AND.IU.EQ.16) THEN
|
|
|
|
! if (IV.EQ.32.AND.IU.EQ.8.and.I.eq.11) THEN
|
|
|
|
! if (IV.EQ.32.AND.IU.EQ.8.and.I.eq.11) THEN
|
|
|
|
! PRINT * ,' R:', R(1:I)
|
|
|
|
! PRINT * ,' R:', R(1:I)
|
|
|
|
! PRINT * ,' BI:', BI(1:I)
|
|
|
|
! PRINT * ,' BI:', BI(1:I)
|
|
|
|
! PRINT * ,' DBI:', DBI(1:I)
|
|
|
|
! PRINT * ,' DBI:', DBI(1:I)
|
|
|
@ -336,21 +337,21 @@ C Here the covariance of the problem would be initiated
|
|
|
|
VALUE = (Ulev(2)-Ulev(1))*(Vlev(2)-Vlev(1))*hhhh
|
|
|
|
VALUE = (Ulev(2)-Ulev(1))*(Vlev(2)-Vlev(1))*hhhh
|
|
|
|
print *,'SumSum f_uv *du*dv=', VALUE
|
|
|
|
print *,'SumSum f_uv *du*dv=', VALUE
|
|
|
|
end if
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
|
|
C sder=sqrt(XL4-XL2*XL2/XL0)
|
|
|
|
C sder=sqrt(XL4-XL2*XL2/XL0)
|
|
|
|
C cder=-XL2/sqrt(XL0)
|
|
|
|
C cder=-XL2/sqrt(XL0)
|
|
|
|
C const1=1/sqrt(XL0*XL4)
|
|
|
|
C const1=1/sqrt(XL0*XL4)
|
|
|
|
C DO 95 IU=1,NU
|
|
|
|
C DO 95 IU=1,NU
|
|
|
|
C U=UT(IU)
|
|
|
|
C U=UT(IU)
|
|
|
|
C FM=Udd(IU)*const1*exp(-0.5*U*U/XL0)*PMEAN(-cder*U,sder)
|
|
|
|
C FM=Udd(IU)*const1*exp(-0.5*U*U/XL0)*PMEAN(-cder*U,sder)
|
|
|
|
C WRITE(9,300) Ulev(IU),FM
|
|
|
|
C WRITE(9,300) Ulev(IU),FM
|
|
|
|
C 95 continue
|
|
|
|
C 95 continue
|
|
|
|
C DO 105 IV=1,NV
|
|
|
|
C DO 105 IV=1,NV
|
|
|
|
C V=VT(IV)
|
|
|
|
C V=VT(IV)
|
|
|
|
C VV=cder*V
|
|
|
|
C VV=cder*V
|
|
|
|
C Fm=Vdd(IV)*const1*exp(-0.5*V*V/XL0)*PMEAN(VV,sder)
|
|
|
|
C Fm=Vdd(IV)*const1*exp(-0.5*V*V/XL0)*PMEAN(VV,sder)
|
|
|
|
C WRITE(8,300) Vlev(IV),Fm
|
|
|
|
C WRITE(8,300) Vlev(IV),Fm
|
|
|
|
C 105 continue
|
|
|
|
C 105 continue
|
|
|
|
if (III0.eq.0) III0=1
|
|
|
|
if (III0.eq.0) III0=1
|
|
|
|
|
|
|
|
|
|
|
|
PRINT *, 'Rate of calls RINDT0:',float(iii01)/float(III0)
|
|
|
|
PRINT *, 'Rate of calls RINDT0:',float(iii01)/float(III0)
|
|
|
|