|
|
@ -1121,6 +1121,42 @@ class FitDistribution(rv_frozen):
|
|
|
|
def _nnlf(self, theta, x):
|
|
|
|
def _nnlf(self, theta, x):
|
|
|
|
return self.dist._penalized_nnlf(theta, x, self._penalty)
|
|
|
|
return self.dist._penalized_nnlf(theta, x, self._penalty)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_dprb(self, x, args, scale, dist):
|
|
|
|
|
|
|
|
lowertail = True
|
|
|
|
|
|
|
|
if lowertail:
|
|
|
|
|
|
|
|
prb = np.hstack((0.0, dist.cdf(x, *args), 1.0))
|
|
|
|
|
|
|
|
dprb = np.diff(prb)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
prb = np.hstack((1.0, dist.sf(x, *args), 0.0))
|
|
|
|
|
|
|
|
dprb = -np.diff(prb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_dprb = log(dprb + _XMIN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dx = np.diff(x, axis=0)
|
|
|
|
|
|
|
|
tie = dx == 0
|
|
|
|
|
|
|
|
if np.any(tie):
|
|
|
|
|
|
|
|
# TODO : implement this method for treating ties in data:
|
|
|
|
|
|
|
|
# Assume measuring error is delta. Then compute
|
|
|
|
|
|
|
|
# yL = F(xi - delta, theta)
|
|
|
|
|
|
|
|
# yU = F(xi + delta, theta)
|
|
|
|
|
|
|
|
# and replace
|
|
|
|
|
|
|
|
# logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1
|
|
|
|
|
|
|
|
# The following is OK when only minimization of T is wanted
|
|
|
|
|
|
|
|
i_tie, = np.nonzero(tie)
|
|
|
|
|
|
|
|
tiedata = x[i_tie]
|
|
|
|
|
|
|
|
log_dprb[i_tie + 1] = log(dist._pdf(tiedata, *args)) - log(scale)
|
|
|
|
|
|
|
|
return log_dprb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_penalty(self, Nbad, finiteD):
|
|
|
|
|
|
|
|
nonfiniteD = 1 - finiteD
|
|
|
|
|
|
|
|
Nbad += np.sum(nonfiniteD, axis=0)
|
|
|
|
|
|
|
|
if Nbad > 0:
|
|
|
|
|
|
|
|
if self._penalty is None:
|
|
|
|
|
|
|
|
penalty = 100.0 * log(_XMAX) * Nbad
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
penalty = 0.0
|
|
|
|
|
|
|
|
return penalty
|
|
|
|
|
|
|
|
|
|
|
|
def _nlogps(self, theta, x):
|
|
|
|
def _nlogps(self, theta, x):
|
|
|
|
""" Moran's negative log Product Spacings statistic
|
|
|
|
""" Moran's negative log Product Spacings statistic
|
|
|
|
|
|
|
|
|
|
|
@ -1146,58 +1182,33 @@ class FitDistribution(rv_frozen):
|
|
|
|
product of spacings.",
|
|
|
|
product of spacings.",
|
|
|
|
IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283
|
|
|
|
IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
n = 2 if isinstance(self.dist, rv_continuous) else 1
|
|
|
|
def parse_theta(theta, dist):
|
|
|
|
try:
|
|
|
|
n = 2 if isinstance(dist, rv_continuous) else 1
|
|
|
|
loc = theta[-n]
|
|
|
|
try:
|
|
|
|
scale = theta[-1]
|
|
|
|
loc = theta[-n]
|
|
|
|
args = tuple(theta[:-n])
|
|
|
|
scale = theta[-1]
|
|
|
|
except IndexError:
|
|
|
|
args = tuple(theta[:-n])
|
|
|
|
raise ValueError("Not enough input arguments.")
|
|
|
|
except IndexError:
|
|
|
|
if not isinstance(self.dist, rv_continuous):
|
|
|
|
raise ValueError("Not enough input arguments.")
|
|
|
|
scale = 1
|
|
|
|
if not isinstance(dist, rv_continuous):
|
|
|
|
if not self.dist._argcheck(*args) or scale <= 0:
|
|
|
|
scale = 1
|
|
|
|
return np.inf
|
|
|
|
return args, loc, scale
|
|
|
|
|
|
|
|
|
|
|
|
dist = self.dist
|
|
|
|
dist = self.dist
|
|
|
|
|
|
|
|
args, loc, scale = parse_theta(theta, dist)
|
|
|
|
|
|
|
|
if not dist._argcheck(*args) or scale <= 0:
|
|
|
|
|
|
|
|
return np.inf
|
|
|
|
x = asarray((x - loc) / scale)
|
|
|
|
x = asarray((x - loc) / scale)
|
|
|
|
cond0 = (x < dist.a) | (dist.b < x)
|
|
|
|
cond0 = (x < dist.a) | (dist.b < x)
|
|
|
|
Nbad = np.sum(cond0)
|
|
|
|
Nbad = np.sum(cond0)
|
|
|
|
if Nbad > 0:
|
|
|
|
if Nbad > 0:
|
|
|
|
x = argsreduce(~cond0, x)[0]
|
|
|
|
x = argsreduce(~cond0, x)[0]
|
|
|
|
|
|
|
|
|
|
|
|
lowertail = True
|
|
|
|
log_dprb = self._log_dprb(x, args, scale, dist)
|
|
|
|
if lowertail:
|
|
|
|
|
|
|
|
prb = np.hstack((0.0, dist.cdf(x, *args), 1.0))
|
|
|
|
|
|
|
|
dprb = np.diff(prb)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
prb = np.hstack((1.0, dist.sf(x, *args), 0.0))
|
|
|
|
|
|
|
|
dprb = -np.diff(prb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logD = log(dprb + _XMIN)
|
|
|
|
finiteD = np.isfinite(log_dprb)
|
|
|
|
dx = np.diff(x, axis=0)
|
|
|
|
penalty = self._compute_penalty(Nbad, finiteD)
|
|
|
|
tie = (dx == 0)
|
|
|
|
return -np.sum(log_dprb[finiteD], axis=0) + penalty
|
|
|
|
if np.any(tie):
|
|
|
|
|
|
|
|
# TODO : implement this method for treating ties in data:
|
|
|
|
|
|
|
|
# Assume measuring error is delta. Then compute
|
|
|
|
|
|
|
|
# yL = F(xi - delta, theta)
|
|
|
|
|
|
|
|
# yU = F(xi + delta, theta)
|
|
|
|
|
|
|
|
# and replace
|
|
|
|
|
|
|
|
# logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# The following is OK when only minimization of T is wanted
|
|
|
|
|
|
|
|
i_tie, = np.nonzero(tie)
|
|
|
|
|
|
|
|
tiedata = x[i_tie]
|
|
|
|
|
|
|
|
logD[i_tie + 1] = log(dist._pdf(tiedata, *args)) - log(scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finiteD = np.isfinite(logD)
|
|
|
|
|
|
|
|
nonfiniteD = 1 - finiteD
|
|
|
|
|
|
|
|
Nbad += np.sum(nonfiniteD, axis=0)
|
|
|
|
|
|
|
|
if Nbad > 0:
|
|
|
|
|
|
|
|
if self._penalty is None:
|
|
|
|
|
|
|
|
penalty = 100.0 * log(_XMAX) * Nbad
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
penalty = 0.0
|
|
|
|
|
|
|
|
return -np.sum(logD[finiteD], axis=0) + penalty
|
|
|
|
|
|
|
|
return -np.sum(logD, axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@staticmethod
|
|
|
|
def _get_optimizer(kwds):
|
|
|
|
def _get_optimizer(kwds):
|
|
|
|