|
|
@ -9,7 +9,7 @@ import numpy as np
|
|
|
|
from numpy import (abs, amax, any, logical_and, arange, linspace, atleast_1d, atleast_2d,
|
|
|
|
from numpy import (abs, amax, any, logical_and, arange, linspace, atleast_1d, atleast_2d,
|
|
|
|
array, asarray, broadcast_arrays, ceil, floor, frexp, hypot,
|
|
|
|
array, asarray, broadcast_arrays, ceil, floor, frexp, hypot,
|
|
|
|
sqrt, arctan2, sin, cos, exp, log, mod, diff, empty_like,
|
|
|
|
sqrt, arctan2, sin, cos, exp, log, mod, diff, empty_like,
|
|
|
|
finfo, inf, pi, interp, isnan, isscalar, zeros, ones,
|
|
|
|
finfo, inf, pi, interp, isnan, isscalar, zeros, ones, linalg,
|
|
|
|
r_, sign, unique, hstack, vstack, nonzero, where, extract)
|
|
|
|
r_, sign, unique, hstack, vstack, nonzero, where, extract)
|
|
|
|
from scipy.special import gammaln
|
|
|
|
from scipy.special import gammaln
|
|
|
|
from scipy.integrate import trapz, simps
|
|
|
|
from scipy.integrate import trapz, simps
|
|
|
@ -648,64 +648,71 @@ def mctp2rfc(f_mM,f_Mm=None):
|
|
|
|
|
|
|
|
|
|
|
|
computes f_rfc = f_mM + F_mct(f_mM).
|
|
|
|
computes f_rfc = f_mM + F_mct(f_mM).
|
|
|
|
|
|
|
|
|
|
|
|
CALL: f_rfc = mctp2rfc(f_mM);
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
----------
|
|
|
|
where
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f_rfc = the rainflow matrix,
|
|
|
|
|
|
|
|
f_mM = the min2max Markov matrix,
|
|
|
|
f_mM = the min2max Markov matrix,
|
|
|
|
|
|
|
|
f_Mm = the max2min Markov matrix,
|
|
|
|
|
|
|
|
|
|
|
|
Further optional input arguments;
|
|
|
|
Returns
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
f_rfc = the rainflow matrix,
|
|
|
|
|
|
|
|
|
|
|
|
CALL: f_rfc = mctp2rfc(f_mM,f_Mm,paramm,paramM);
|
|
|
|
Example:
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
>>> fmM = np.array([[ 0.0183, 0.0160, 0.0002, 0.0000, 0],
|
|
|
|
|
|
|
|
... [0.0178, 0.5405, 0.0952, 0, 0],
|
|
|
|
|
|
|
|
... [0.0002, 0.0813, 0, 0, 0],
|
|
|
|
|
|
|
|
... [0.0000, 0, 0, 0, 0],
|
|
|
|
|
|
|
|
... [ 0, 0, 0, 0, 0]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>>> mctp2rfc(fmM)
|
|
|
|
|
|
|
|
array([[ 2.66998090e-02, 7.79970042e-03, 4.90607697e-07,
|
|
|
|
|
|
|
|
0.00000000e+00, 0.00000000e+00],
|
|
|
|
|
|
|
|
[ 9.59962873e-03, 5.48500862e-01, 9.53995094e-02,
|
|
|
|
|
|
|
|
0.00000000e+00, 0.00000000e+00],
|
|
|
|
|
|
|
|
[ 5.62297379e-07, 8.14994377e-02, 0.00000000e+00,
|
|
|
|
|
|
|
|
0.00000000e+00, 0.00000000e+00],
|
|
|
|
|
|
|
|
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
|
|
|
|
|
|
|
|
0.00000000e+00, 0.00000000e+00],
|
|
|
|
|
|
|
|
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
|
|
|
|
|
|
|
|
0.00000000e+00, 0.00000000e+00]])
|
|
|
|
|
|
|
|
|
|
|
|
f_Mm = the max2min Markov matrix,
|
|
|
|
|
|
|
|
paramm = the parameter matrix defining discretization of minimas,
|
|
|
|
|
|
|
|
paramM = the parameter matrix defining discretization of maximas,
|
|
|
|
|
|
|
|
'''
|
|
|
|
'''
|
|
|
|
# TODO: Check this: paramm and paramM are never used?????
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if f_Mm is None:
|
|
|
|
if f_Mm is None:
|
|
|
|
f_Mm=f_mM
|
|
|
|
f_mM = np.atleast_1d(f_mM)
|
|
|
|
|
|
|
|
f_Mm = f_mM.copy()
|
|
|
|
# if nargin<3
|
|
|
|
else:
|
|
|
|
# paramm=[-1, 1 ,length(f_mM)];
|
|
|
|
|
|
|
|
# paramM=paramm;
|
|
|
|
|
|
|
|
# end
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# if nargin<4
|
|
|
|
|
|
|
|
# paramM=paramm;
|
|
|
|
|
|
|
|
# end
|
|
|
|
|
|
|
|
f_mM, f_Mm = np.atleast_1d(f_mM, f_Mm)
|
|
|
|
f_mM, f_Mm = np.atleast_1d(f_mM, f_Mm)
|
|
|
|
|
|
|
|
|
|
|
|
N = max(f_mM.shape)
|
|
|
|
N = max(f_mM.shape)
|
|
|
|
f_max = sum(f_mM,axis=1)
|
|
|
|
f_max = np.sum(f_mM, axis=1)
|
|
|
|
f_min = sum(f_mM, axis=0)
|
|
|
|
f_min = np.sum(f_mM, axis=0)
|
|
|
|
f_rfc = zeros((N, N))
|
|
|
|
f_rfc = zeros((N, N))
|
|
|
|
f_rfc[N-1,0]=f_max[N-1]
|
|
|
|
f_rfc[N - 2, 0] = f_max[N - 2]
|
|
|
|
f_rfc[1,N-1]=f_min[N-1]
|
|
|
|
f_rfc[0, N - 2] = f_min[N - 2]
|
|
|
|
for k in range(2, N - 1):
|
|
|
|
for k in range(2, N - 1):
|
|
|
|
for i in range(1,k-1):
|
|
|
|
for i in range(1, k):
|
|
|
|
AA = f_mM[N-k+1:N-k+i-1, k-i+1:k-1]
|
|
|
|
AA = f_mM[N - 1 - k:N - 1 - k + i, k - i:k]
|
|
|
|
AA1 = f_Mm[N-k+1:N-k+i-1, k-i+1:k-1]
|
|
|
|
AA1 = f_Mm[N - 1 - k:N - 1 - k + i, k - i:k]
|
|
|
|
RAA = f_rfc[N-k+1:N-k+i-1, k-i+1:k-1]
|
|
|
|
RAA = f_rfc[N - 1 - k:N - 1 - k + i, k - i:k]
|
|
|
|
nA = max(AA.shape);
|
|
|
|
nA = max(AA.shape)
|
|
|
|
MA = f_max[N-k+1:N-k+i-1]
|
|
|
|
MA = f_max[N - 1 - k:N - 1 - k + i]
|
|
|
|
mA = f_min[k-i+1:k-1]
|
|
|
|
mA = f_min[k - i:k]
|
|
|
|
SA = AA.sum()
|
|
|
|
SA = AA.sum()
|
|
|
|
SRA = RAA.sum()
|
|
|
|
SRA = RAA.sum()
|
|
|
|
|
|
|
|
|
|
|
|
DRFC = SA-SRA;
|
|
|
|
DRFC = SA - SRA
|
|
|
|
NT = min(mA[0]-sum(RAA[:,1]),MA[0]-sum(RAA[1,:])) # ?? check
|
|
|
|
NT = min(mA[0] - sum(RAA[:, 0]), MA[0] - sum(RAA[0, :])) # ?? check
|
|
|
|
NT = max(NT, 0) # ??check
|
|
|
|
NT = max(NT, 0) # ??check
|
|
|
|
|
|
|
|
|
|
|
|
if NT > 1e-6 * max(MA[0], mA[0]):
|
|
|
|
if NT > 1e-6 * max(MA[0], mA[0]):
|
|
|
|
NN = MA-sum(AA,axis=1) # T
|
|
|
|
NN = MA - np.sum(AA, axis=1) # T
|
|
|
|
e = (mA-sum(AA, axis=0)) # T
|
|
|
|
e = (mA - np.sum(AA, axis=0)) # T
|
|
|
|
e = np.flipud(e)
|
|
|
|
e = np.flipud(e)
|
|
|
|
PmM = np.rot90(AA)
|
|
|
|
PmM = np.rot90(AA.copy())
|
|
|
|
for j in range(nA):
|
|
|
|
for j in range(nA):
|
|
|
|
norm=mA[nA-j+1]
|
|
|
|
norm = mA[nA - 1 - j]
|
|
|
|
if norm != 0:
|
|
|
|
if norm != 0:
|
|
|
|
PmM[j, :] = PmM[j, :] / norm
|
|
|
|
PmM[j, :] = PmM[j, :] / norm
|
|
|
|
e[j] = e[j] / norm
|
|
|
|
e[j] = e[j] / norm
|
|
|
@ -713,43 +720,43 @@ def mctp2rfc(f_mM,f_Mm=None):
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
fx = 0.0;
|
|
|
|
fx = 0.0;
|
|
|
|
if max(abs(e)) > 1e-6 and max(abs(NN)) > 1e-6 * max(MA[0], mA[0]):
|
|
|
|
if max(abs(e)) > 1e-6 and max(abs(NN)) > 1e-6 * max(MA[0], mA[0]):
|
|
|
|
PMm=AA1;
|
|
|
|
PMm = AA1.copy()
|
|
|
|
for j in range(nA):
|
|
|
|
for j in range(nA):
|
|
|
|
norm=MA(j);
|
|
|
|
norm = MA[j]
|
|
|
|
if norm != 0:
|
|
|
|
if norm != 0:
|
|
|
|
PMm[j, :] = PMm[j, :] / norm;
|
|
|
|
PMm[j, :] = PMm[j, :] / norm;
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
PMm=fliplr(PMm)
|
|
|
|
PMm = np.fliplr(PMm)
|
|
|
|
|
|
|
|
|
|
|
|
A=PMm; B=PmM;
|
|
|
|
A = PMm
|
|
|
|
I=eye(A.shape)
|
|
|
|
B = PmM
|
|
|
|
|
|
|
|
|
|
|
|
if nA == 1:
|
|
|
|
if nA == 1:
|
|
|
|
fx = NN * (A / (1 - B * A) * e)
|
|
|
|
fx = NN * (A / (1 - B * A) * e)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
fx=NN*(A*((I-B*A)\e)) #least squares
|
|
|
|
rh = np.eye(A.shape[0]) - np.dot(B, A)
|
|
|
|
|
|
|
|
fx = np.dot(NN, np.dot(A, linalg.solve(rh, e))) #least squares
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
|
|
|
|
f_rfc[N - 1 - k, k - i] = fx + DRFC
|
|
|
|
f_rfc[N-k+1,k-i+1] = fx+DRFC
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# check2=[ DRFC fx]
|
|
|
|
# check2=[ DRFC fx]
|
|
|
|
# pause
|
|
|
|
# pause
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
f_rfc[N-k+1,k-i+1]=0.;
|
|
|
|
f_rfc[N - 1 - k, k - i] = 0.0
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
m0 = max(0,f_min[0]-sum(f_rfc[N-k+2:N,1]));
|
|
|
|
m0 = max(0, f_min[0] - np.sum(f_rfc[N - k + 1:N, 0]))
|
|
|
|
M0 = max(0,Max(N-k+1)-sum(f_rfc[N-k+1,2:k]));
|
|
|
|
M0 = max(0, f_max[N - 1 - k] - np.sum(f_rfc[N - 1 - k, 1:k]))
|
|
|
|
f_rfc[N-k+1,1] = min(m0,M0)
|
|
|
|
f_rfc[N - 1 - k, 0] = min(m0, M0)
|
|
|
|
#% n_loops_left=N-k+1
|
|
|
|
#% n_loops_left=N-k+1
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
|
|
|
|
|
|
|
|
for k in range(1, N):
|
|
|
|
for k in range(1, N):
|
|
|
|
M0 = max(0,f_max[0]-sum(f_rfc[1,N-k+2:N]));
|
|
|
|
M0 = max(0, f_max[0] - np.sum(f_rfc[0, N - k:N]));
|
|
|
|
m0 = max(0,f_min[N-k+1]-sum(f_rfc[2:k,N-k+1]));
|
|
|
|
m0 = max(0, f_min[N - 1 - k] - np.sum(f_rfc[1:k+1, N - 1 - k]));
|
|
|
|
f_rfc[1,N-k+1] = min(m0,M0)
|
|
|
|
f_rfc[0, N - 1 - k] = min(m0, M0)
|
|
|
|
#end
|
|
|
|
#end
|
|
|
|
|
|
|
|
|
|
|
|
# %clf
|
|
|
|
# %clf
|
|
|
@ -767,14 +774,7 @@ def mctp2rfc(f_mM,f_Mm=None):
|
|
|
|
# %axis([paramm(1) paramm(2) paramM(1) paramM(2)])
|
|
|
|
# %axis([paramm(1) paramm(2) paramM(1) paramM(2)])
|
|
|
|
# %axis('square')
|
|
|
|
# %axis('square')
|
|
|
|
|
|
|
|
|
|
|
|
return f_frfc
|
|
|
|
return f_rfc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|