Reduced complexity of _compute_cov

master
pbrod 8 years ago
parent dcd3db4658
commit 8f5d0495af

@ -1235,32 +1235,33 @@ class FitDistribution(rv_frozen):
"""
return self.dist._penalized_nlogps(theta, x)
def _compute_cov(self):
'''Compute covariance
'''
numpar = self.dist.numargs + 2
par_cov = zeros((numpar, numpar))
def _invert_hessian(self, H):
par_cov = zeros(H.shape)
somefixed = ((self.par_fix is not None) and
np.any(isfinite(self.par_fix)))
H = np.asmatrix(self._hessian(self._fitfun, self.par, self.data))
# H = -nd.Hessian(lambda par: self._fitfun(par, self.data),
# method='forward')(self.par)
self.H = H
try:
if somefixed:
allfixed = np.all(isfinite(self.par_fix))
if allfixed:
self.par_cov[:, :] = 0
else:
if not allfixed:
pcov = -pinv2(H[self.i_notfixed, :][..., self.i_notfixed])
for row, ix in enumerate(list(self.i_notfixed)):
par_cov[ix, self.i_notfixed] = pcov[row, :]
else:
par_cov = -pinv2(H)
return par_cov
def _compute_cov(self):
'''Compute covariance
'''
H = np.asmatrix(self._hessian(self._fitfun, self.par, self.data))
# H = -nd.Hessian(lambda par: self._fitfun(par, self.data),
# method='forward')(self.par)
self.H = H
try:
par_cov = self._invert_hessian(H)
except:
par_cov[:, :] = nan
par_cov = nan * np.ones(H.shape)
return par_cov
def fitfun(self, phat):

Loading…
Cancel
Save