Added qlevels2 + possibility to calculate weighted percentile

master
Per.Andreas.Brodtkorb 14 years ago
parent 076d890e60
commit 8ebae12935

@ -16,11 +16,12 @@ from numpy import pi, sqrt, atleast_2d, exp, newaxis #@UnresolvedImport
from scipy import interpolate, linalg from scipy import interpolate, linalg
from scipy.special import gamma from scipy.special import gamma
from wafo.misc import meshgrid from wafo.misc import meshgrid
from wafo.wafodata import WafoData
import copy import copy
import numpy as np import numpy as np
import scipy import scipy
import warnings import warnings
from wafo.wafodata import WafoData
import pylab import pylab
_stats_epan = (1. / 5, 3. / 5, np.inf) _stats_epan = (1. / 5, 3. / 5, np.inf)
@ -1842,86 +1843,114 @@ def qlevels(pdf, p=(10, 30, 50, 70, 90, 95, 99, 99.9), x1=None, x2=None):
return ui return ui
#def qlevels2(r, p=(10,30,50,70,90, 95, 99, 99.9), method=1): def qlevels2(r, p=(10,30,50,70,90, 95, 99, 99.9), method=1):
# ''' '''
# QLEVELS2 Calculates quantile levels which encloses P% of data QLEVELS2 Calculates quantile levels which encloses P% of data
#
# CALL: [ql PL] = qlevels2(data,PL,method);
#
# ql = the discrete quantile levels, size Np x D
# data = data matrix, size N x D (D = # of dimensions)
# PL = percent level vector, length Np (default [10:20:90 95 99 99.9])
# method = 1 Interpolation so that F(X_(k)) == (k-0.5)/n. (default)
# 2 Interpolation so that F(X_(k)) == k/(n+1).
# 3 Based on the empirical distribution.
#
# QLEVELS2 sort the columns of data in ascending order and find the
# quantile levels for each column which encloses P% of the data.
#
# Examples : % Finding quantile levels enclosing P% of data:
# xs = rndnorm(0,1,100000,1);
# qls = qlevels2(pdfnorm(xs),[10:20:90 95 99 99.9]);
# % compared with the exact values
# ql = pdfnorm(invnorm((100-[10:20:90 95 99 99.9])/200));
#
# % Finding the median of xs:
# ql = qlevels2(xs,50);
#
# See also qlevels
# '''
# [n, d]=size(r);
# p = np.atleast_1d(p)
# if np.any((p<0) | (100<p)):
# ValueError('PL must satisfy 0 <= PL <= 100')
#
# if (n==1) && (d>1)
# r=r(:);
# n=d;
# d=1;
# end
# if d>1
# if min(size(p)) > 1
# error('Not both matrix r and matrix p input')
# end
# q = zeros(length(p),d);
# else
# q = zeros(size(p));
# end
# p = 1-p(:)/100;
# x = sort(r);
#
#
# if method == 3
# qq1 = x(ceil(max(1,p*n)),:);
# qq2 = x(floor(min(p*n+1,n)),:);
# qq = (qq1+qq2)/2;
# else
# x = [x(1,:); x; x(n,:)];
# if method == 2
# % This method is from Hjort's "Computer
# % intensive statistical methods" page 102
# i = p*(n+1)+1;
# else % Metod 1
# i = p*n+1.5;
# end
# iu = ceil(i);
# il = floor(i);
# d1 = (i-il)*ones(1,d);
# qq = x(il,:).*(1-d1)+x(iu,:).*d1;
# end
#
# q(:) = qq;
#
# return
CALL: [ql PL] = qlevels2(data,PL,method);
ql = the discrete quantile levels, size D X Np
data = data matrix, size D x N (D = # of dimensions)
PL = percent level vector, length Np (default [10:20:90 95 99 99.9])
method = 1 Interpolation so that F(X_(k)) == (k-0.5)/n. (default)
2 Interpolation so that F(X_(k)) == k/(n+1).
3 Based on the empirical distribution.
QLEVELS2 sort the columns of data in ascending order and find the
quantile levels for each column which encloses P% of the data.
Examples : % Finding quantile levels enclosing P% of data:
--------
>>> import wafo.stats as ws
>>> PL = np.r_[10:90:20, 90, 95, 99, 99.9]
>>> xs = ws.norm.rvs(size=2000000)
>>> np.round(qlevels2(ws.norm.pdf(xs), p=PL), decimals=3)
array([ 0.396, 0.37 , 0.318, 0.233, 0.103, 0.058, 0.014, 0.002])
# compared with the exact values
>>> ws.norm.pdf(ws.norm.ppf((100-PL)/200))
array([ 0.39580488, 0.370399 , 0.31777657, 0.23315878, 0.10313564,
0.05844507, 0.01445974, 0.00177719])
# Finding the median of xs:
>>> np.round(qlevels2(xs,50), decimals=2)
array([ 0.])
See also
--------
qlevels
'''
q = 100-np.atleast_1d(p)
return percentile(r, q, axis=-1, method=method)
_PKDICT = {1: lambda k, w, n: (k - w) / (n - 1),
2: lambda k, w, n: (k - w / 2) / n,
3: lambda k, w, n: k / n,
4: lambda k, w, n: k / (n + 1),
5: lambda k, w, n: (k - w / 3) / (n + 1 / 3),
6: lambda k, w, n: (k - w * 3 / 8) / (n + 1 / 4)}
def _compute_qth_weighted_percentile(a, q, axis, out, method, weights, overwrite_input):
# normalise weight vector such that sum of the weight vector equals to n
q = np.atleast_1d(q) / 100.0
if (q < 0).any() or (q > 1).any():
raise ValueError, "percentile must be in the range [0,100]"
shape0 = a.shape
if axis is None:
sorted = a.ravel()
else:
taxes = range(a.ndim)
taxes[-1], taxes[axis] = taxes[axis], taxes[-1]
sorted = np.transpose(a, taxes).reshape(-1, shape0[axis])
ind = sorted.argsort(axis= -1)
if overwrite_input:
sorted.sort(axis= -1)
else:
sorted = np.sort(sorted, axis= -1)
w = np.atleast_1d(weights)
n = len(w)
w = w * n / w.sum()
# Work on each column separately because of weight vector
m = sorted.shape[0]
nq = len(q)
y = np.zeros((m, nq))
pk_fun = _PKDICT.get(method, 1)
for i in range(m):
sortedW = w[ind[i]] # rearrange the weight according to ind
k = sortedW.cumsum() # cumulative weight
pk = pk_fun(k, sortedW, n) # different algorithm to compute percentile
# Interpolation between pk and sorted for given value of q
y[i] = np.interp(q, pk, sorted[i])
if axis is None:
return np.squeeze(y)
else:
shape1 = list(shape0)
shape1[axis], shape1[-1] = shape1[-1], nq
return np.squeeze(np.transpose(y.reshape(shape1), taxes))
#method=1: p(k) = k/(n-1)
#method=2: p(k) = (k+0.5)/n.
#method=3: p(k) = (k+1)/n
#method=4: p(k) = (k+1)/(n+1)
#method=5: p(k) = (k+2/3)/(n+1/3)
#method=6: p(k) = (k+5/8)/(n+1/4)
_KDICT = {1:lambda p, n: p * (n - 1),
2:lambda p, n: p * n - 0.5,
3:lambda p, n: p * n - 1,
4:lambda p, n: p * (n + 1) - 1,
5:lambda p, n: p * (n + 1. / 3) - 2. / 3,
6:lambda p, n: p * (n + 1. / 4) - 5. / 8}
def _compute_qth_percentile(sorted, q, axis, out, method): def _compute_qth_percentile(sorted, q, axis, out, method):
if not np.isscalar(q): if not np.isscalar(q):
p = [_compute_qth_percentile(sorted, qi, axis, None, method) p = [_compute_qth_percentile(sorted, qi, axis, None, method)
for qi in q] for qi in q]
if out is not None: if out is not None:
out.flat = p out.flat = p
return p return p
q = q / 100.0 q = q / 100.0
@ -1930,38 +1959,29 @@ def _compute_qth_percentile(sorted, q, axis, out, method):
indexer = [slice(None)] * sorted.ndim indexer = [slice(None)] * sorted.ndim
Nx = sorted.shape[axis] Nx = sorted.shape[axis]
if method==1: k_fun = _KDICT.get(method, 1)
index = q*(Nx-1) # p(k) = k/n index = np.clip(k_fun(q, Nx), 0, Nx - 1)
elif method==2:
index = q*(Nx-1) + 0.5 # p(k) = (k-0.5)/n.
elif method==3:
index = q*Nx # p(k) = k/(n+1)
elif method==4:
index = q*(Nx-2) + 1 # p(k) = (k-1)/(n-1)
elif method==5:
index = q*(Nx-2./3) + 1./3 #p(k) = (k-1/3)/(n+1/3)
i = int(index) i = int(index)
if i == index: if i == index:
indexer[axis] = slice(i, i + 1) indexer[axis] = slice(i, i + 1)
weights = np.array(1) weights1 = np.array(1)
sumval = 1.0 sumval = 1.0
else: else:
indexer[axis] = slice(i, i + 2) indexer[axis] = slice(i, i + 2)
j = i + 1 j = i + 1
weights = np.array([(j - index), (index - i)],float) weights1 = np.array([(j - index), (index - i)], float)
wshape = [1] * sorted.ndim wshape = [1] * sorted.ndim
wshape[axis] = 2 wshape[axis] = 2
weights.shape = wshape weights1.shape = wshape
sumval = weights.sum() sumval = weights1.sum()
# Use add.reduce in both cases to coerce data type as well as # Use add.reduce in both cases to coerce data type as well as
# check and use out array. # check and use out array.
return np.add.reduce(sorted[indexer]*weights, axis=axis, out=out)/sumval return np.add.reduce(sorted[indexer] * weights1, axis=axis, out=out) / sumval
def percentile(a, q, axis=None, out=None, overwrite_input=False, method=1): def percentile(a, q, axis=None, out=None, overwrite_input=False, method=1, weights=None):
""" """
Compute the qth percentile of the data along the specified axis. Compute the qth percentile of the data along the specified axis.
@ -1980,23 +2000,6 @@ def percentile(a, q, axis=None, out=None, overwrite_input=False, method=1):
Alternative output array in which to place the result. It must Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output, have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary. but the type (of the output) will be cast if necessary.
method : scalar integer
defining the interpolation method. Valid options are
1 : p(k) = k/n. That is, linear interpolation of the empirical cdf.
2 : p(k) = (k-0.5)/n. That is a piecewise linear function where
the knots are the values midway through the steps of the
empirical cdf. This is popular amongst hydrologists. (default)
PRCTILE also uses this formula.
3 : p(k) = k/(n+1). Thus p(k) = E[F(x[k])].
This is used by Minitab and by SPSS.
4 : p(k) = (k-1)/(n-1). In this case, p(k) = mode[F(x[k])].
This is used by S.
5 : p(k) = (k-1/3)/(n+1/3). Then p(k) =~ median[F(x[k])].
The resulting quantile estimates are approximately
median-unbiased regardless of the distribution of x.
6 : p(k) = (k-3/8)/(n+1/4). The resulting quantile estimates are
approximately unbiased for the expected order statistics
if x is normally distributed.
overwrite_input : {False, True}, optional overwrite_input : {False, True}, optional
If True, then allow use of memory of input array (a) for If True, then allow use of memory of input array (a) for
calculations. The input array will be modified by the call to calculations. The input array will be modified by the call to
@ -2005,6 +2008,23 @@ def percentile(a, q, axis=None, out=None, overwrite_input=False, method=1):
but it will probably be fully or partially sorted. Default is but it will probably be fully or partially sorted. Default is
False. Note that, if `overwrite_input` is True and the input False. Note that, if `overwrite_input` is True and the input
is not already an ndarray, an error will be raised. is not already an ndarray, an error will be raised.
method : scalar integer
defining the interpolation method. Valid options are
1 : p[k] = k/(n-1). In this case, p[k] = mode[F(x[k])].
This is used by S. (default)
2 : p[k] = (k+0.5)/n. That is a piecewise linear function where
the knots are the values midway through the steps of the
empirical cdf. This is popular amongst hydrologists.
Matlab also uses this formula.
3 : p[k] = (k+1)/n. That is, linear interpolation of the empirical cdf.
4 : p[k] = (k+1)/(n+1). Thus p[k] = E[F(x[k])].
This is used by Minitab and by SPSS.
5 : p[k] = (k+2/3)/(n+1/3). Then p[k] =~ median[F(x[k])].
The resulting quantile estimates are approximately
median-unbiased regardless of the distribution of x.
6 : p[k] = (k+5/8)/(n+1/4). The resulting quantile estimates are
approximately unbiased for the expected order statistics
if x is normally distributed.
Returns Returns
------- -------
@ -2029,40 +2049,48 @@ def percentile(a, q, axis=None, out=None, overwrite_input=False, method=1):
Examples Examples
-------- --------
>>> import wafo.kdetools as wk
>>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a >>> a
array([[10, 7, 4], array([[10, 7, 4],
[ 3, 2, 1]]) [ 3, 2, 1]])
>>> np.percentile(a, 50) >>> wk.percentile(a, 50)
3.5 3.5
>>> np.percentile(a, 50, axis=0) >>> wk.percentile(a, 50, axis=0)
array([ 6.5, 4.5, 2.5])
>>> wk.percentile(a, 50, axis=0, weights=np.ones(2))
array([ 6.5, 4.5, 2.5]) array([ 6.5, 4.5, 2.5])
>>> np.percentile(a, 50, axis=1) >>> wk.percentile(a, 50, axis=1)
array([ 7., 2.])
>>> wk.percentile(a, 50, axis=1, weights=np.ones(3))
array([ 7., 2.]) array([ 7., 2.])
>>> m = np.percentile(a, 50, axis=0) >>> m = wk.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m) >>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=m) >>> wk.percentile(a, 50, axis=0, out=m)
array([ 6.5, 4.5, 2.5]) array([ 6.5, 4.5, 2.5])
>>> m >>> m
array([ 6.5, 4.5, 2.5]) array([ 6.5, 4.5, 2.5])
>>> b = a.copy() >>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True) >>> wk.percentile(b, 50, axis=1, overwrite_input=True)
array([ 7., 2.]) array([ 7., 2.])
>>> assert not np.all(a==b) >>> assert not np.all(a==b)
>>> b = a.copy() >>> b = a.copy()
>>> np.percentile(b, 50, axis=None, overwrite_input=True) >>> wk.percentile(b, 50, axis=None, overwrite_input=True)
3.5 3.5
>>> assert not np.all(a==b) >>> assert not np.all(a==b)
""" """
a = np.asarray(a) a = np.asarray(a)
try:
if q == 0: if q == 0:
return a.min(axis=axis, out=out) return a.min(axis=axis, out=out)
elif q == 100: elif q == 100:
return a.max(axis=axis, out=out) return a.max(axis=axis, out=out)
except:
if overwrite_input: pass
if weights is not None:
return _compute_qth_weighted_percentile(a, q, axis, out, method, weights, overwrite_input)
elif overwrite_input:
if axis is None: if axis is None:
sorted = a.ravel() sorted = a.ravel()
sorted.sort() sorted.sort()

@ -1,5 +1,5 @@
GFORTRAN module version '0' created from intmodule.f on Fri Aug 07 03:21:27 2009 GFORTRAN module version '0' created from intmodule.f on Mon Mar 07 09:38:08 2011
MD5:aec1e548e8264e60a27019892ee3cddd -- If you edit this, you'll get what you deserve. MD5:6f82304120060b1026ed5eb64a44a657 -- If you edit this, you'll get what you deserve.
(() () () () () () () () () () () () () () () () () () () () () () () () (() () () () () () () () () () () () () () () () () () () () () () () ()
() () ()) () () ())
@ -42,18 +42,18 @@ UNKNOWN DUMMY FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 26 0 (27 28)
DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
10 'relreq' '' 'relreq' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN 10 'relreq' '' 'relreq' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
12 'finest' '' 'finest' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
11 'absest' '' 'absest' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN 11 'absest' '' 'absest' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
12 'finest' '' 'finest' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
13 'inform' '' 'inform' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
5 'ndim' '' 'ndim' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( 5 'ndim' '' 'ndim' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (
INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
6 'mincls' '' 'mincls' 4 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN 6 'mincls' '' 'mincls' 4 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
7 'maxcls' '' 'maxcls' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN 7 'maxcls' '' 'maxcls' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
13 'inform' '' 'inform' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
27 'n' '' 'n' 26 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( 27 'n' '' 'n' 26 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (
INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
28 'z' '' 'z' 26 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION 28 'z' '' 'z' 26 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION

@ -1,5 +1,5 @@
GFORTRAN module version '0' created from rind71mod.f on Fri Jul 09 20:01:05 2010 GFORTRAN module version '0' created from rind71mod.f on Mon Mar 07 09:38:11 2011
MD5:fc4ffe08c60cbfe3a121a63154dd2c49 -- If you edit this, you'll get what you deserve. MD5:5fe7f8d121252e680c2bd7d7c177fa9d -- If you edit this, you'll get what you deserve.
(() () () () () () () () () () () () () () () () () () () () () (() () () () () () () () () () () () () () () () () () () () ()
() () () () () ()) () () () () () ())
@ -205,14 +205,14 @@ REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
29 'n0' '' 'n0' 23 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( 29 'n0' '' 'n0' 23 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (
INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
39 'bpout' '' 'bpout' 36 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN
DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT
(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0)
37 'n' '' 'n' 36 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( 37 'n' '' 'n' 36 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (
INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
38 'wfout' '' 'wfout' 36 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN 38 'wfout' '' 'wfout' 36 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN
DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT
(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) (INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0)
39 'bpout' '' 'bpout' 36 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN
DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT
(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0)
40 'xmi' '' 'xmi' 36 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( 40 'xmi' '' 'xmi' 36 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (
REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
41 'xma' '' 'xma' 36 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( 41 'xma' '' 'xma' 36 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (

@ -1,5 +1,5 @@
GFORTRAN module version '0' created from rind71mod.f on Fri Jul 09 20:01:06 2010 GFORTRAN module version '0' created from rind71mod.f on Mon Mar 07 09:38:12 2011
MD5:1f288e757358b6b93dec46af1aa38ca8 -- If you edit this, you'll get what you deserve. MD5:1bad57d2f2489b66d6c5cedb9317e71b -- If you edit this, you'll get what you deserve.
(() () () () () () () () () () () () () () () () () () () () () () () (() () () () () () () () () () () () () () () () () () () () () () ()
() () () ()) () () () ())
@ -25,10 +25,10 @@ DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN
5 'setdata' 'rind71mod' 'setdata' 1 ((PROCEDURE UNKNOWN-INTENT 5 'setdata' 'rind71mod' 'setdata' 1 ((PROCEDURE UNKNOWN-INTENT
MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ())
19 0 (20 21 22 23 24 25 26 27 28) () 0 () () () 0 0) 19 0 (20 21 22 23 24 25 26 27 28) () 0 () () () 0 0)
24 'deps2' '' 'deps2' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN 7 'array' '' 'array' 6 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) UNKNOWN DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 ASSUMED_SHAPE (
25 'dnit' '' 'dnit' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') () (CONSTANT (INTEGER 4 0 0
(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) INTEGER ()) 0 '1') ()) 0 () () () 0 0)
26 'dxc' '' 'dxc' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( 26 'dxc' '' 'dxc' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (
REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
27 'dnint' '' 'dnint' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN 27 'dnint' '' 'dnint' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN
@ -43,12 +43,12 @@ DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
23 'dreps' '' 'dreps' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN 23 'dreps' '' 'dreps' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
24 'deps2' '' 'deps2' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN
DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0)
25 'dnit' '' 'dnit' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY)
(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
9 'speed' '' 'speed' 8 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) 9 'speed' '' 'speed' 8 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY)
(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0)
7 'array' '' 'array' 6 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
UNKNOWN DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 ASSUMED_SHAPE (
CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') () (CONSTANT (INTEGER 4 0 0
INTEGER ()) 0 '1') ()) 0 () () () 0 0)
11 'fxind' '' 'fxind' 10 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN 11 'fxind' '' 'fxind' 10 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN
DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT
(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) (INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0)

Loading…
Cancel
Save