Small updates

master
Per.Andreas.Brodtkorb 12 years ago
parent 70146d8ef2
commit 869e088793

@ -33,7 +33,7 @@ def peaks(x=None, y=None, n=51):
Example
-------
>>> import pylab as plt
>>> import matplotlib.pyplot as plt
>>> x,y,z = peaks()
>>> h = plt.contourf(x,y,z)
@ -54,6 +54,13 @@ def peaks(x=None, y=None, n=51):
def humps(x=None):
'''
Computes a function that has three roots, and some humps.
Example
-------
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0,1)
>>> y = humps(x)
>>> h = plt.plot(x,y)
'''
if x is None:
y = np.linspace(0, 1)

@ -1136,7 +1136,7 @@ def richardson(Q, k):
R = Q[k] + (Q[k] - Q[k - 1]) / c
return R
def quadgr(fun, a, b, abseps=1e-5):
def quadgr(fun, a, b, abseps=1e-5, maxiter=17):
'''
Gauss-Legendre quadrature with Richardson extrapolation.
@ -1218,7 +1218,7 @@ def quadgr(fun, a, b, abseps=1e-5):
Q = -Q
return Q, err
#% Gauss-Legendre quadrature (12-point)
# Gauss-Legendre quadrature (12-point)
xq = np.asarray([0.12523340851146894, 0.36783149899818018, 0.58731795428661748,
0.76990267419430469, 0.9041172563704748, 0.98156063424671924])
wq = np.asarray([0.24914704581340288, 0.23349253653835478, 0.20316742672306584,
@ -1232,8 +1232,8 @@ def quadgr(fun, a, b, abseps=1e-5):
# else:
dtype = np.float64
#% Initiate vectors
max_iter = 17 # Max number of iterations
# Initiate vectors
# max_iter = 17 # Max number of iterations
Q0 = zeros(max_iter, dtype=dtype) # Quadrature
Q1 = zeros(max_iter, dtype=dtype) # First Richardson extrapolation
Q2 = zeros(max_iter, dtype=dtype) # Second Richardson extrapolation
@ -1480,10 +1480,12 @@ def main():
q0 = np.trapz(humps(x), x)
[q, err] = romberg(humps, 0, np.pi / 2, 1e-4)
print q, err
def test_docstrings():
np.set_printoptions(precision=7)
import doctest
doctest.testmod()
if __name__ == '__main__':
test_docstrings()
#main()

Loading…
Cancel
Save