|
|
@ -787,14 +787,22 @@ class Kernel(object):
|
|
|
|
|
|
|
|
|
|
|
|
h = np.asarray(h0, dtype=float)
|
|
|
|
h = np.asarray(h0, dtype=float)
|
|
|
|
|
|
|
|
|
|
|
|
nfft = inc * 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax1, bx1 = self._get_grid_limits(A)
|
|
|
|
ax1, bx1 = self._get_grid_limits(A)
|
|
|
|
|
|
|
|
|
|
|
|
kernel2 = Kernel('gauss')
|
|
|
|
kernel2 = Kernel('gauss')
|
|
|
|
mu2, R, _Rdd = kernel2.stats()
|
|
|
|
mu2, R, _Rdd = kernel2.stats()
|
|
|
|
ste_constant2 = kernel2.get_ste_constant(n)
|
|
|
|
ste_constant2 = kernel2.get_ste_constant(n)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _estimate_psi(c, xn, g2, n, numout=2):
|
|
|
|
|
|
|
|
inc = len(xn)
|
|
|
|
|
|
|
|
nfft = 2 * inc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kw0 = kernel2.deriv4_6_8_10(xn / g2, numout=numout+1)
|
|
|
|
|
|
|
|
kw6 = kw0[-2]
|
|
|
|
|
|
|
|
kw = np.r_[kw6, 0, kw6[-1:0:-1]] # Apply fftshift to kw.
|
|
|
|
|
|
|
|
z = np.real(ifft(fft(c, nfft) * fft(kw))) # convolution.
|
|
|
|
|
|
|
|
return np.sum(c * z[:inc]) / (n * (n - 1) * g2 ** (2*numout-1 + 4))
|
|
|
|
|
|
|
|
|
|
|
|
for dim in range(d):
|
|
|
|
for dim in range(d):
|
|
|
|
s = sigmaA[dim]
|
|
|
|
s = sigmaA[dim]
|
|
|
|
ax = ax1[dim]
|
|
|
|
ax = ax1[dim]
|
|
|
@ -814,18 +822,8 @@ class Kernel(object):
|
|
|
|
g1 = (-2 * k40 / (mu2 * psi6NS * n)) ** (1.0 / 7)
|
|
|
|
g1 = (-2 * k40 / (mu2 * psi6NS * n)) ** (1.0 / 7)
|
|
|
|
g2 = (-2 * k60 / (mu2 * psi8NS * n)) ** (1.0 / 9)
|
|
|
|
g2 = (-2 * k60 / (mu2 * psi8NS * n)) ** (1.0 / 9)
|
|
|
|
|
|
|
|
|
|
|
|
# Estimate psi6 given g2.
|
|
|
|
psi6 = _estimate_psi(c, xn, g2, n, numout=2)
|
|
|
|
# kernel weights.
|
|
|
|
psi4 = _estimate_psi(c, xn, g1, n, numout=1)
|
|
|
|
kw4, kw6 = kernel2.deriv4_6_8_10(xn / g2, numout=2)
|
|
|
|
|
|
|
|
kw = np.r_[kw6, 0, kw6[-1:0:-1]] # Apply fftshift to kw.
|
|
|
|
|
|
|
|
z = np.real(ifft(fft(c, nfft) * fft(kw))) # convolution.
|
|
|
|
|
|
|
|
psi6 = np.sum(c * z[:inc]) / (n * (n - 1) * g2 ** 7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Estimate psi4 given g1.
|
|
|
|
|
|
|
|
kw4 = kernel2.deriv4_6_8_10(xn / g1, numout=1) # kernel weights.
|
|
|
|
|
|
|
|
kw = np.r_[kw4, 0, kw4[-1:0:-1]] # Apply 'fftshift' to kw.
|
|
|
|
|
|
|
|
z = np.real(ifft(fft(c, nfft) * fft(kw))) # convolution.
|
|
|
|
|
|
|
|
psi4 = np.sum(c * z[:inc]) / (n * (n - 1) * g1 ** 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h1 = h[dim]
|
|
|
|
h1 = h[dim]
|
|
|
|
h_old = 0
|
|
|
|
h_old = 0
|
|
|
@ -840,13 +838,7 @@ class Kernel(object):
|
|
|
|
gamma_ = ((2 * k40 * mu2 * psi4 * h1 ** 5) /
|
|
|
|
gamma_ = ((2 * k40 * mu2 * psi4 * h1 ** 5) /
|
|
|
|
(-psi6 * R)) ** (1.0 / 7)
|
|
|
|
(-psi6 * R)) ** (1.0 / 7)
|
|
|
|
|
|
|
|
|
|
|
|
# Now estimate psi4 given gamma_.
|
|
|
|
psi4Gamma = _estimate_psi(c, xn, gamma_, n, numout=1)
|
|
|
|
# kernel weights.
|
|
|
|
|
|
|
|
kw4 = kernel2.deriv4_6_8_10(xn / gamma_, numout=1)
|
|
|
|
|
|
|
|
kw = np.r_[kw4, 0, kw4[-1:0:-1]] # Apply 'fftshift' to kw.
|
|
|
|
|
|
|
|
z = np.real(ifft(fft(c, nfft) * fft(kw))) # convolution.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
psi4Gamma = np.sum(c * z[:inc]) / (n * (n - 1) * gamma_ ** 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Step 4
|
|
|
|
# Step 4
|
|
|
|
h1 = (ste_constant2 / psi4Gamma) ** (1.0 / 5)
|
|
|
|
h1 = (ste_constant2 / psi4Gamma) ** (1.0 / 5)
|
|
|
@ -1130,6 +1122,16 @@ class Kernel(object):
|
|
|
|
g1 = (-2. * k60 / (mu2 * psi8 * n)) ** (1. / 9.)
|
|
|
|
g1 = (-2. * k60 / (mu2 * psi8 * n)) ** (1. / 9.)
|
|
|
|
g2 = (-2. * k100 / (mu2 * psi12 * n)) ** (1. / 13.)
|
|
|
|
g2 = (-2. * k100 / (mu2 * psi12 * n)) ** (1. / 13.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _estimate_psi(c, xn, g2, n, numout=2):
|
|
|
|
|
|
|
|
inc = len(xn)
|
|
|
|
|
|
|
|
nfft = 2 * inc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kw0 = kernel2.deriv4_6_8_10(xn / g2, numout=numout+1)
|
|
|
|
|
|
|
|
kw6 = kw0[-2]
|
|
|
|
|
|
|
|
kw = np.r_[kw6, 0, kw6[-1:0:-1]] # Apply fftshift to kw.
|
|
|
|
|
|
|
|
z = np.real(ifft(fft(c, nfft) * fft(kw))) # convolution.
|
|
|
|
|
|
|
|
return np.sum(c * z[:inc]) / (n * (n-1) * g2 ** (2*numout-1 + 4))
|
|
|
|
|
|
|
|
|
|
|
|
for dim in range(d):
|
|
|
|
for dim in range(d):
|
|
|
|
s = sigmaA[dim]
|
|
|
|
s = sigmaA[dim]
|
|
|
|
ax = ax1[dim] / s
|
|
|
|
ax = ax1[dim] / s
|
|
|
@ -1141,28 +1143,14 @@ class Kernel(object):
|
|
|
|
|
|
|
|
|
|
|
|
c = gridcount(datan, xa)
|
|
|
|
c = gridcount(datan, xa)
|
|
|
|
|
|
|
|
|
|
|
|
kw4, kw6 = kernel2.deriv4_6_8_10(xn / g1, numout=2)
|
|
|
|
psi6 = _estimate_psi(c, xn, g1, n, numout=2)
|
|
|
|
kw = np.r_[kw6, 0, kw6[-1:0:-1]]
|
|
|
|
psi10 = _estimate_psi(c, xn, g2, n, numout=4)
|
|
|
|
z = np.real(ifft(fft(c, nfft) * fft(kw)))
|
|
|
|
|
|
|
|
psi6 = np.sum(c * z[:inc]) / (n ** 2 * g1 ** 7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kw4, kw6, kw8, kw10 = kernel2.deriv4_6_8_10(xn / g2, numout=4)
|
|
|
|
|
|
|
|
kw = np.r_[kw10, 0, kw10[-1:0:-1]]
|
|
|
|
|
|
|
|
z = np.real(ifft(fft(c, nfft) * fft(kw)))
|
|
|
|
|
|
|
|
psi10 = np.sum(c * z[:inc]) / (n ** 2 * g2 ** 11)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
g3 = (-2. * k40 / (mu2 * psi6 * n)) ** (1. / 7.)
|
|
|
|
g3 = (-2. * k40 / (mu2 * psi6 * n)) ** (1. / 7.)
|
|
|
|
g4 = (-2. * k80 / (mu2 * psi10 * n)) ** (1. / 11.)
|
|
|
|
g4 = (-2. * k80 / (mu2 * psi10 * n)) ** (1. / 11.)
|
|
|
|
|
|
|
|
|
|
|
|
kw4 = kernel2.deriv4_6_8_10(xn / g3, numout=1)
|
|
|
|
psi4 = _estimate_psi(c, xn, g3, n, numout=1)
|
|
|
|
kw = np.r_[kw4, 0, kw4[-1:0:-1]]
|
|
|
|
psi8 = _estimate_psi(c, xn, g4, n, numout=3)
|
|
|
|
z = np.real(ifft(fft(c, nfft) * fft(kw)))
|
|
|
|
|
|
|
|
psi4 = np.sum(c * z[:inc]) / (n ** 2 * g3 ** 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kw4, kw6, kw8 = kernel2.deriv4_6_8_10(xn / g3, numout=3)
|
|
|
|
|
|
|
|
kw = np.r_[kw8, 0, kw8[-1:0:-1]]
|
|
|
|
|
|
|
|
z = np.real(ifft(fft(c, nfft) * fft(kw)))
|
|
|
|
|
|
|
|
psi8 = np.sum(c * z[:inc]) / (n ** 2 * g4 ** 9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const = (441. / (64 * pi)) ** (1. / 18.) * \
|
|
|
|
const = (441. / (64 * pi)) ** (1. / 18.) * \
|
|
|
|
(4 * pi) ** (-1. / 5.) * \
|
|
|
|
(4 * pi) ** (-1. / 5.) * \
|
|
|
|