Added doctests....

master
Per A Brodtkorb 9 years ago
parent a8d66ebeea
commit 790c32757b

@ -201,13 +201,10 @@ def lazywhere(cond, arrays, f, fillvalue=None, f2=None):
""" """
if fillvalue is None: if fillvalue is None:
if f2 is None: _assert(f2 is not None, "One of (fillvalue, f2) must be given.")
raise ValueError("One of (fillvalue, f2) must be given.") fillvalue = np.nan
else:
fillvalue = np.nan
else: else:
if f2 is not None: _assert(f2 is None, "Only one of (fillvalue, f2) can be given.")
raise ValueError("Only one of (fillvalue, f2) can be given.")
arrays = np.broadcast_arrays(*arrays) arrays = np.broadcast_arrays(*arrays)
temp = tuple(np.extract(cond, arr) for arr in arrays) temp = tuple(np.extract(cond, arr) for arr in arrays)
@ -224,6 +221,7 @@ def rotation_matrix(heading, pitch, roll):
''' '''
Examples Examples
--------
>>> import numpy as np >>> import numpy as np
>>> rotation_matrix(heading=0, pitch=0, roll=0) >>> rotation_matrix(heading=0, pitch=0, roll=0)
array([[ 1., 0., 0.], array([[ 1., 0., 0.],
@ -266,6 +264,24 @@ def rotation_matrix(heading, pitch, roll):
def rotate(x, y, z, heading=0, pitch=0, roll=0): def rotate(x, y, z, heading=0, pitch=0, roll=0):
"""
Example
-------
>>> import numpy as np
>>> x, y, z = 1, 1, 1
>>> np.allclose(rotate(x, y, z, heading=0, pitch=0, roll=0),
... (1.0, 1.0, 1.0))
True
>>> np.allclose(rotate(x, y, z, heading=90, pitch=0, roll=0),
... (-1.0, 1.0, 1.0))
True
>>> np.allclose(rotate(x, y, z, heading=0, pitch=90, roll=0),
... (1.0, 1.0, -1.0))
True
>>> np.allclose(rotate(x, y, z, heading=0, pitch=0, roll=90),
... (1.0, -1.0, 1.0))
True
"""
rot_param = rotation_matrix(heading, pitch, roll).ravel() rot_param = rotation_matrix(heading, pitch, roll).ravel()
X = x * rot_param[0] + y * rot_param[1] + z * rot_param[2] X = x * rot_param[0] + y * rot_param[1] + z * rot_param[2]
Y = x * rot_param[3] + y * rot_param[4] + z * rot_param[5] Y = x * rot_param[3] + y * rot_param[4] + z * rot_param[5]
@ -354,8 +370,19 @@ def spaceline(start_point, stop_point, num=10):
return np.array([e1 + n * delta * C for n in range(num)]) return np.array([e1 + n * delta * C for n in range(num)])
def narg_smallest(n, arr): def narg_smallest(arr, n=1):
''' Return the n smallest indicis to the arr ''' Return the n smallest indices to the arr
Examples
--------
>>> import numpy as np
>>> t = np.array([37, 11, 4, 23, 4, 6, 3, 2, 7, 4, 0])
>>> ix = narg_smallest(t, 3)
>>> np.allclose(ix,
... [10, 7, 6])
True
>>> np.allclose(t[ix], [0, 2, 3])
True
''' '''
return np.array(arr).argsort()[:n] return np.array(arr).argsort()[:n]
@ -408,18 +435,16 @@ def args_flat(*args):
''' '''
nargin = len(args) nargin = len(args)
_assert(nargin in [1, 3], 'Number of arguments must be 1 or 3!')
if (nargin == 1): # pos if (nargin == 1): # pos
pos = np.atleast_2d(args[0]) pos = np.atleast_2d(args[0])
_assert((pos.shape[1] == 3) and (pos.ndim == 2), _assert((pos.shape[1] == 3) and (pos.ndim == 2),
'POS array must be of shape N x 3!') 'POS array must be of shape N x 3!')
return pos, None return pos, None
elif nargin == 3:
x, y, z = np.broadcast_arrays(*args[:3]) x, y, z = np.broadcast_arrays(*args[:3])
c_shape = x.shape c_shape = x.shape
return np.vstack((x.ravel(), y.ravel(), z.ravel())).T, c_shape return np.vstack((x.ravel(), y.ravel(), z.ravel())).T, c_shape
else:
raise ValueError('Number of arguments must be 1 or 3!')
def index2sub(shape, index, order='C'): def index2sub(shape, index, order='C'):
@ -501,13 +526,20 @@ def sub2index(shape, *subscripts, **kwds):
def is_numlike(obj): def is_numlike(obj):
'return true if *obj* looks like a number' """return true if *obj* looks like a number
Examples
--------
>>> is_numlike(1)
True
>>> is_numlike('1')
False
"""
try: try:
obj + 1 obj + 1
except TypeError: except TypeError:
return False return False
else: return True
return True
class JITImport(object): class JITImport(object):
@ -560,6 +592,11 @@ class Bunch(object):
>>> d = Bunch(test1=1,test2=3) >>> d = Bunch(test1=1,test2=3)
>>> d.test1 >>> d.test1
1 1
>>> d.keys() == ['test1', 'test2']
True
>>> d.update(test1=2)
>>> d.test1
2
''' '''
def __init__(self, **kwargs): def __init__(self, **kwargs):
@ -651,6 +688,9 @@ def detrendma(x, L):
>>> np.allclose(tr[:5], >>> np.allclose(tr[:5],
... [ 1.14134814, 1.14134814, 1.14134814, 1.14134814, 1.14134814]) ... [ 1.14134814, 1.14134814, 1.14134814, 1.14134814, 1.14134814])
True True
>>> y1 = wm.detrendma(y, 200)
>>> np.allclose((y-y1), 1.7239972279640454)
True
import pylab as plt import pylab as plt
h = plt.plot(x, y, x, y0, 'r', x, exp(x), 'k', x, tr, 'm') h = plt.plot(x, y, x, y0, 'r', x, exp(x), 'k', x, tr, 'm')
@ -660,11 +700,8 @@ def detrendma(x, L):
-------- --------
Reconstruct Reconstruct
""" """
_assert(0 < L, 'L must be positive')
if L <= 0: _assert(L == round(L), 'L must be an integer')
raise ValueError('L must be positive')
if L != round(L):
raise ValueError('L must be an integer')
x1 = np.atleast_1d(x) x1 = np.atleast_1d(x)
if x1.shape[0] == 1: if x1.shape[0] == 1:
@ -818,6 +855,9 @@ def findcross(x, v=0.0, kind=None):
True True
>>> ind2 = wm.findcross(x,v,'u') >>> ind2 = wm.findcross(x,v,'u')
>>> np.allclose(ind2, [ 9, 80, 151, 223]) >>> np.allclose(ind2, [ 9, 80, 151, 223])
True
>>> ind3 = wm.findcross(x,v,'d')
>>> np.allclose(ind3, [ 25, 97, 168, 239])
True True
t0 = plt.plot(t,x,'.',t[ind],x[ind],'r.', t, ones(t.shape)*v) t0 = plt.plot(t,x,'.',t[ind],x[ind],'r.', t, ones(t.shape)*v)
@ -1788,6 +1828,9 @@ def findtc(x_in, v=None, kind=None):
>>> tc = x1[itc,:] >>> tc = x1[itc,:]
>>> np.allclose(itc, [ 52, 105]) >>> np.allclose(itc, [ 52, 105])
True True
>>> itc, iv = wm.findtc(x1[:,1],0,'uw')
>>> np.allclose(itc, [ 105, 157])
True
a = plt.plot(x1[:,0],x1[:,1],tc[:,0],tc[:,1],'ro') a = plt.plot(x1[:,0],x1[:,1],tc[:,0],tc[:,1],'ro')
plt.close('all') plt.close('all')
@ -1891,8 +1934,10 @@ def findoutliers(x, zcrit=0.0, dcrit=None, ddcrit=None, verbose=False):
>>> dcrit = 5*dt >>> dcrit = 5*dt
>>> ddcrit = 9.81/2*dt*dt >>> ddcrit = 9.81/2*dt*dt
>>> zcrit = 0 >>> zcrit = 0
>>> [inds, indg] = wm.findoutliers(xx[:,1],zcrit,dcrit,ddcrit,verbose=True) >>> inds, indg = wm.findoutliers(xx[:,1], verbose=True)
Found 0 missing points Found 0 missing points
dcrit is set to 1.05693
ddcrit is set to 1.05693
Found 0 spurious positive jumps of Dx Found 0 spurious positive jumps of Dx
Found 0 spurious negative jumps of Dx Found 0 spurious negative jumps of Dx
Found 0 spurious positive jumps of D^2x Found 0 spurious positive jumps of D^2x
@ -1952,8 +1997,7 @@ def findoutliers(x, zcrit=0.0, dcrit=None, ddcrit=None, verbose=False):
xn = asarray(x).flatten() xn = asarray(x).flatten()
if xn.size < 2: _assert(2 < xn.size, 'The vector must have more than 2 elements!')
raise ValueError('The vector must have more than 2 elements!')
i_missing = _find_nans(xn) i_missing = _find_nans(xn)
if np.any(i_missing): if np.any(i_missing):
@ -2084,8 +2128,16 @@ def stirlerr(n):
Example Example
------- -------
>>> import wafo.misc as wm >>> import wafo.misc as wm
>>> np.abs(wm.stirlerr(2)- 0.0413407)<1e-7 >>> np.allclose(wm.stirlerr(2), 0.0413407)
array([ True], dtype=bool) True
>>> np.allclose(wm.stirlerr(5), 0.01664469)
True
>>> np.allclose(wm.stirlerr(8), 0.01041127)
True
>>> np.allclose(wm.stirlerr(12), 0.00694284)
True
>>> np.allclose(wm.stirlerr(70), 0.00119047)
True
See also See also
--------- ---------
@ -2131,7 +2183,7 @@ def stirlerr(n):
def getshipchar(value=None, property="max_deadweight", # @ReservedAssignment def getshipchar(value=None, property="max_deadweight", # @ReservedAssignment
**kwds): # @IgnorePep8 **kwds):
''' '''
Return ship characteristics from value of one ship-property Return ship characteristics from value of one ship-property
@ -2165,8 +2217,7 @@ def getshipchar(value=None, property="max_deadweight", # @ReservedAssignment
Example Example
--------- ---------
>>> import wafo.misc as wm >>> import wafo.misc as wm
>>> sc = wm.getshipchar(10,'service_speed') >>> true_sc = {'service_speedSTD': 0,
>>> sc == {'service_speedSTD': 0,
... 'lengthSTD': 2.0113098831942762, ... 'lengthSTD': 2.0113098831942762,
... 'draught': 9.5999999999999996, ... 'draught': 9.5999999999999996,
... 'propeller_diameterSTD': 0.20267047566705432, ... 'propeller_diameterSTD': 0.20267047566705432,
@ -2177,6 +2228,10 @@ def getshipchar(value=None, property="max_deadweight", # @ReservedAssignment
... 'draughtSTD': 2.1120000000000001, ... 'draughtSTD': 2.1120000000000001,
... 'max_deadweight': 30969.0, ... 'max_deadweight': 30969.0,
... 'propeller_diameter': 6.761165385916601} ... 'propeller_diameter': 6.761165385916601}
>>> wm.getshipchar(10,'service_speed') == true_sc
True
>>> sc = wm.getshipchar(service_speed=10)
>>> sc == true_sc
True True
Other units: 1 ft = 0.3048 m and 1 knot = 0.5144 m/s Other units: 1 ft = 0.3048 m and 1 knot = 0.5144 m/s
@ -2190,8 +2245,7 @@ def getshipchar(value=None, property="max_deadweight", # @ReservedAssignment
''' '''
if value is None: if value is None:
names = kwds.keys() names = kwds.keys()
if len(names) != 1: _assert(len(names) == 1, 'Only one keyword allowed!')
raise ValueError('Only on keyword')
property = names[0] # @ReservedAssignment property = names[0] # @ReservedAssignment
value = kwds[property] value = kwds[property]
value = np.array(value) value = np.array(value)
@ -2509,6 +2563,13 @@ def polar2cart(theta, rho, z=None):
x, y : array-like x, y : array-like
Cartesian coordinates, x = rho*cos(theta), y = rho*sin(theta) Cartesian coordinates, x = rho*cos(theta), y = rho*sin(theta)
Examples
--------
>>> np.allclose(polar2cart(0, 1, 1), (1, 0, 1))
True
>>> np.allclose(polar2cart(0, 1), (1, 0))
True
See also See also
-------- --------
cart2polar cart2polar
@ -2516,8 +2577,7 @@ def polar2cart(theta, rho, z=None):
x, y = rho * cos(theta), rho * sin(theta) x, y = rho * cos(theta), rho * sin(theta)
if z is None: if z is None:
return x, y return x, y
else: return x, y, z
return x, y, z
pol2cart = polar2cart pol2cart = polar2cart
@ -2531,6 +2591,13 @@ def cart2polar(x, y, z=None):
rho : array-like rho : array-like
radial distance, sqrt(x**2+y**2) radial distance, sqrt(x**2+y**2)
Examples
--------
>>> np.allclose(cart2polar(1, 0, 1), (0, 1, 1))
True
>>> np.allclose(cart2polar(1, 0), (0, 1))
True
See also See also
-------- --------
polar2cart polar2cart
@ -2538,8 +2605,7 @@ def cart2polar(x, y, z=None):
t, r = arctan2(y, x), hypot(x, y) t, r = arctan2(y, x), hypot(x, y)
if z is None: if z is None:
return t, r return t, r
else: return t, r, z
return t, r, z
cart2pol = cart2polar cart2pol = cart2polar
@ -2586,30 +2652,22 @@ def trangood(x, f, min_n=None, min_x=None, max_x=None, max_n=inf):
""" """
xo, fo = atleast_1d(x, f) xo, fo = atleast_1d(x, f)
if (xo.ndim != 1): _assert(xo.ndim == 1, 'x must be a vector.')
raise ValueError('x must be a vector.') _assert(fo.ndim == 1, 'f must be a vector.')
if (fo.ndim != 1):
raise ValueError('f must be a vector.')
i = xo.argsort() i = xo.argsort()
xo, fo = xo[i], fo[i] xo, fo = xo[i], fo[i]
del i del i
dx = diff(xo) dx = diff(xo)
if (any(dx <= 0)): _assert(all(dx > 0), 'Duplicate x-values not allowed.')
raise ValueError('Duplicate x-values not allowed.')
nf = fo.shape[0] nf = fo.shape[0]
if max_x is None: max_x = xo[-1] if max_x is None else max_x
max_x = xo[-1] min_x = xo[0] if min_x is None else min_x
if min_x is None: min_n = nf if min_n is None else min_n
min_x = xo[0] min_n = max(min_n, 2)
if min_n is None: max_n = max(max_n, 2)
min_n = nf
if (min_n < 2):
min_n = 2
if (max_n < 2):
max_n = 2
ddx = diff(dx) ddx = diff(dx)
xn = xo[-1] xn = xo[-1]
@ -2835,6 +2893,20 @@ def good_bins(data=None, range=None, num_bins=None, # @ReservedAssignment
return limits return limits
def _make_bars(limits, bin_):
limits.shape = (-1, 1)
xx = limits.repeat(3, axis=1)
xx.shape = (-1,)
xx = xx[1:-1]
bin_.shape = (-1, 1)
yy = bin_.repeat(3, axis=1)
# yy[0,0] = 0.0 # pdf
yy[:, 0] = 0.0 # histogram
yy.shape = (-1,)
yy = np.hstack((yy, 0.0))
return xx, yy
def plot_histgrm(data, bins=None, range=None, # @ReservedAssignment def plot_histgrm(data, bins=None, range=None, # @ReservedAssignment
normed=False, weights=None, lintype='b-'): normed=False, weights=None, lintype='b-'):
''' '''
@ -2892,18 +2964,9 @@ def plot_histgrm(data, bins=None, range=None, # @ReservedAssignment
if bins is None: if bins is None:
bins = np.ceil(4 * np.sqrt(np.sqrt(len(x)))) bins = np.ceil(4 * np.sqrt(np.sqrt(len(x))))
bin_, limits = np.histogram( bin_, limits = np.histogram(data, bins=bins,
data, bins=bins, normed=normed, weights=weights) normed=normed, weights=weights)
limits.shape = (-1, 1) xx, yy = _make_bars(limits, bin_)
xx = limits.repeat(3, axis=1)
xx.shape = (-1,)
xx = xx[1:-1]
bin_.shape = (-1, 1)
yy = bin_.repeat(3, axis=1)
# yy[0,0] = 0.0 # pdf
yy[:, 0] = 0.0 # histogram
yy.shape = (-1,)
yy = np.hstack((yy, 0.0))
return plotbackend.plot(xx, yy, lintype, limits, limits * 0) return plotbackend.plot(xx, yy, lintype, limits, limits * 0)
@ -2927,6 +2990,12 @@ def num2pistr(x, n=3, numerator_max=10, denominator_max=10):
>>> import wafo.misc as wm >>> import wafo.misc as wm
>>> wm.num2pistr(np.pi*3/4)=='3\\pi/4' >>> wm.num2pistr(np.pi*3/4)=='3\\pi/4'
True True
>>> wm.num2pistr(-np.pi/4)=='-\\pi/4'
True
>>> wm.num2pistr(-np.pi)=='-\\pi'
True
>>> wm.num2pistr(-1/4)=='-0.25'
True
''' '''
def _denominator_text(den): def _denominator_text(den):
return '' if abs(den) == 1 else '/%d' % den return '' if abs(den) == 1 else '/%d' % den
@ -2934,13 +3003,14 @@ def num2pistr(x, n=3, numerator_max=10, denominator_max=10):
def _numerator_text(num): def _numerator_text(num):
if abs(num) == 1: if abs(num) == 1:
return '-' if num == -1 else '' return '-' if num == -1 else ''
return '%d' % num return '{:d}'.format(num)
frac = fractions.Fraction.from_float(x / pi).limit_denominator(int(1e+13)) frac = fractions.Fraction.from_float(x / pi).limit_denominator(int(1e+13))
num, den = frac.numerator, frac.denominator num, den = frac.numerator, frac.denominator
if (den < denominator_max) and (num < numerator_max) and (num != 0): if (den < denominator_max) and (num < numerator_max) and (num != 0):
return _numerator_text(num) + r'\pi' + _denominator_text(den) return r'{0:s}\pi{1:s}'.format(_numerator_text(num),
fmt = '%0.' + '%dg' % n _denominator_text(den))
return fmt % x fmt = '{:0.' + '{:d}'.format(n) + 'g}'
return fmt.format(x)
def fourier(data, t=None, period=None, m=None, n=None, method='trapz'): def fourier(data, t=None, period=None, m=None, n=None, method='trapz'):

Loading…
Cancel
Save