|
|
|
@ -30,6 +30,12 @@ try:
|
|
|
|
|
except ImportError:
|
|
|
|
|
warnings.warn('Compile the c_library.pyd again!')
|
|
|
|
|
c_library = None
|
|
|
|
|
try:
|
|
|
|
|
from wafo import cov2mod
|
|
|
|
|
except ImportError:
|
|
|
|
|
warnings.warn('Compile the cov2mod.pyd again!')
|
|
|
|
|
cov2mod = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#from wafo.transform import TrData
|
|
|
|
|
from wafo.transform.models import TrLinear
|
|
|
|
@ -255,7 +261,7 @@ def plotspec(specdata, linetype='b-', flag=1):
|
|
|
|
|
|
|
|
|
|
spectype = specdata.type.lower()
|
|
|
|
|
stype = spectype[-3::]
|
|
|
|
|
if stype in ('enc','req','k1d') : #1D plot
|
|
|
|
|
if stype in ('enc', 'req', 'k1d') : #1D plot
|
|
|
|
|
Fn = freq[-1] # Nyquist frequency
|
|
|
|
|
indm = findpeaks(data, n=4)
|
|
|
|
|
maxS = data.max()
|
|
|
|
@ -266,19 +272,19 @@ def plotspec(specdata, linetype='b-', flag=1):
|
|
|
|
|
|
|
|
|
|
Fp = freq[indm]# %peak frequency/wave number
|
|
|
|
|
|
|
|
|
|
if len(indm)==1:
|
|
|
|
|
if len(indm) == 1:
|
|
|
|
|
txt = [('fp = %0.2g' % Fp) + funit]
|
|
|
|
|
else:
|
|
|
|
|
txt = []
|
|
|
|
|
for i,fp in enumerate(Fp.tolist()):
|
|
|
|
|
txt.append(('fp%d = %0.2g' % (i,fp)) + funit)
|
|
|
|
|
for i, fp in enumerate(Fp.tolist()):
|
|
|
|
|
txt.append(('fp%d = %0.2g' % (i, fp)) + funit)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (flag == 3):
|
|
|
|
|
plotbackend.subplot(2,1,1)
|
|
|
|
|
if (flag == 1) or (flag ==3):#% Plot in normal scale
|
|
|
|
|
plotbackend.plot(np.vstack([Fp, Fp]),np.vstack([zeros(len(indm)), data.take(indm)]),':',
|
|
|
|
|
freq,data,linetype)
|
|
|
|
|
plotbackend.subplot(2, 1, 1)
|
|
|
|
|
if (flag == 1) or (flag == 3):#% Plot in normal scale
|
|
|
|
|
plotbackend.plot(np.vstack([Fp, Fp]), np.vstack([zeros(len(indm)), data.take(indm)]), ':',
|
|
|
|
|
freq, data, linetype)
|
|
|
|
|
|
|
|
|
|
# if isfield(S,'CI'),
|
|
|
|
|
# plot(freq,S.S*S.CI(1), 'r:' )
|
|
|
|
@ -287,29 +293,29 @@ def plotspec(specdata, linetype='b-', flag=1):
|
|
|
|
|
a = plotbackend.axis()
|
|
|
|
|
|
|
|
|
|
a1 = Fn
|
|
|
|
|
if (Fp>0):
|
|
|
|
|
a1 = max(min(Fn,10*max(Fp)),a[1]);
|
|
|
|
|
if (Fp > 0):
|
|
|
|
|
a1 = max(min(Fn, 10 * max(Fp)), a[1]);
|
|
|
|
|
|
|
|
|
|
plotbackend.axis([0, a1 ,0, max(1.01*maxS,a[3])])
|
|
|
|
|
plotbackend.axis([0, a1 , 0, max(1.01 * maxS, a[3])])
|
|
|
|
|
plotbackend.title('Spectral density')
|
|
|
|
|
plotbackend.xlabel(xlbl_txt)
|
|
|
|
|
plotbackend.ylabel(ylbl1_txt )
|
|
|
|
|
plotbackend.ylabel(ylbl1_txt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (flag==3):
|
|
|
|
|
plotbackend.subplot(2,1,2)
|
|
|
|
|
if (flag == 3):
|
|
|
|
|
plotbackend.subplot(2, 1, 2)
|
|
|
|
|
|
|
|
|
|
if (flag == 2) or (flag ==3) : # Plot in logaritmic scale
|
|
|
|
|
ind = np.flatnonzero(data>0)
|
|
|
|
|
if (flag == 2) or (flag == 3) : # Plot in logaritmic scale
|
|
|
|
|
ind = np.flatnonzero(data > 0)
|
|
|
|
|
|
|
|
|
|
plotbackend.plot(np.vstack([Fp,Fp]),np.vstack((min(10*log10(data.take(ind)/maxS)).repeat(len(Fp)),
|
|
|
|
|
10*log10(data.take(indm)/maxS))),':')
|
|
|
|
|
plotbackend.plot(np.vstack([Fp, Fp]), np.vstack((min(10 * log10(data.take(ind) / maxS)).repeat(len(Fp)),
|
|
|
|
|
10 * log10(data.take(indm) / maxS))), ':')
|
|
|
|
|
# hold on
|
|
|
|
|
# if isfield(S,'CI'),
|
|
|
|
|
# plot(freq(ind),10*log10(S.S(ind)*S.CI(1)/maxS), 'r:' )
|
|
|
|
|
# plot(freq(ind),10*log10(S.S(ind)*S.CI(2)/maxS), 'r:' )
|
|
|
|
|
# end
|
|
|
|
|
plotbackend.plot(freq[ind],10*log10(data[ind]/maxS),linetype)
|
|
|
|
|
plotbackend.plot(freq[ind], 10 * log10(data[ind] / maxS), linetype)
|
|
|
|
|
|
|
|
|
|
# if ih, a=axis; else a=[0 0 0 0]; end
|
|
|
|
|
# axis([0 max(min(Fn,max(10*Fp)),a(2)) -20 max(1.01*10*log10(1),a(4))]) % log10(maxS)
|
|
|
|
@ -650,14 +656,14 @@ class SpecData1D(WafoData):
|
|
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwds):
|
|
|
|
|
self.name_ = kwds.pop('name', 'WAFO Spectrum Object')
|
|
|
|
|
self.type = kwds.pop('type','freq')
|
|
|
|
|
self.freqtype = kwds.pop('freqtype','w')
|
|
|
|
|
self.type = kwds.pop('type', 'freq')
|
|
|
|
|
self.freqtype = kwds.pop('freqtype', 'w')
|
|
|
|
|
self.angletype = ''
|
|
|
|
|
self.h = kwds.pop('h',inf)
|
|
|
|
|
self.tr = kwds.pop('tr',None) #TrLinear()
|
|
|
|
|
self.phi = kwds.pop('phi',0.0)
|
|
|
|
|
self.v = kwds.pop('v',0.0)
|
|
|
|
|
self.norm = kwds.pop('norm',False)
|
|
|
|
|
self.h = kwds.pop('h', inf)
|
|
|
|
|
self.tr = kwds.pop('tr', None) #TrLinear()
|
|
|
|
|
self.phi = kwds.pop('phi', 0.0)
|
|
|
|
|
self.v = kwds.pop('v', 0.0)
|
|
|
|
|
self.norm = kwds.pop('norm', False)
|
|
|
|
|
super(SpecData1D, self).__init__(*args, **kwds)
|
|
|
|
|
|
|
|
|
|
self.setlabels()
|
|
|
|
@ -1113,6 +1119,113 @@ class SpecData1D(WafoData):
|
|
|
|
|
|
|
|
|
|
return SL, SN
|
|
|
|
|
|
|
|
|
|
def to_mm_pdf(self, paramt=None, paramu=None, utc=None, nit=2, EPS=5e-5,
|
|
|
|
|
EPSS=1e-6, C=4.5, EPS0=1e-5, IAC=1, ISQ=0, verbose=False):
|
|
|
|
|
'''
|
|
|
|
|
nit = order of numerical integration: 0,1,2,3,4,5.
|
|
|
|
|
paramu = parameter vector defining discretization of min/max values.
|
|
|
|
|
t = grid of time points between maximum and minimum (to
|
|
|
|
|
integrate out). interval between maximum and the following
|
|
|
|
|
minimum,
|
|
|
|
|
The variable ISQ marks which type of conditioning will be used ISQ=0
|
|
|
|
|
means random time where the probability is minimum, ISQ=1 is the time
|
|
|
|
|
where the variance of the residual process is minimal(ISQ=1 is faster).
|
|
|
|
|
|
|
|
|
|
NIT, IAC are described in CROSSPACK paper, EPS0 is the accuracy constant
|
|
|
|
|
used in choosing the number of nodes in numerical integrations
|
|
|
|
|
(XX1, H1 vectors). The nodes and weights and other parameters are
|
|
|
|
|
read in the subroutine INITINTEG from files Z.DAT, H.DAT and ACCUR.DAT.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NIT=0, IAC=1 then one uses RIND0 - subroutine, all other cases
|
|
|
|
|
goes through RIND1, ...,RIND5. NIT=0, here means explicite formula
|
|
|
|
|
approximation for XIND=E[Y^+1{ HH<BU(I)<0 for all I, I=1,...,N}], where
|
|
|
|
|
BU(I) is deterministic function.
|
|
|
|
|
|
|
|
|
|
NIT=1, leads tp call RIND1, IAC=0 is also explicit form approximation,
|
|
|
|
|
while IAC=1 leads to maximum one dimensional integral.
|
|
|
|
|
.......
|
|
|
|
|
NIT=5, leads tp call RIND5, IAC is maximally 4-dimensional integral,
|
|
|
|
|
while IAC=1 leads to maximum 5 dimensional integral.
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
S = self.copy()
|
|
|
|
|
S.normalize()
|
|
|
|
|
m, unused_mtxt = self.moment(nr=4, even=True)
|
|
|
|
|
A = sqrt(m[0] / m[1])
|
|
|
|
|
|
|
|
|
|
if paramt is None:
|
|
|
|
|
distanceBetweenExtremes = 5*pi*sqrt(m[1]/m[2]) #(2.5 * mean distance between extremes)
|
|
|
|
|
paramt = [0, distanceBetweenExtremes, 43]
|
|
|
|
|
|
|
|
|
|
if paramu is None:
|
|
|
|
|
paramu = [-4*sqrt(m[0]), 4*sqrt(m[0]), 41]
|
|
|
|
|
|
|
|
|
|
if self.tr is None:
|
|
|
|
|
g = TrLinear(var=m[0])
|
|
|
|
|
else:
|
|
|
|
|
g = self.tr
|
|
|
|
|
|
|
|
|
|
if utc is None:
|
|
|
|
|
utc = g.gauss2dat(0) # most frequent crossed level
|
|
|
|
|
|
|
|
|
|
# transform reference level into Gaussian level
|
|
|
|
|
u = g.dat2gauss(utc)
|
|
|
|
|
if verbose:
|
|
|
|
|
print('The level u for Gaussian process = %g' % u)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unused_t0, tn, Nt = paramt
|
|
|
|
|
t = linspace(0, tn/A, Nt) # normalized times
|
|
|
|
|
|
|
|
|
|
#Transform amplitudes to Gaussian levels:
|
|
|
|
|
h = linspace(*paramu);
|
|
|
|
|
dt = t[1] - t[0]
|
|
|
|
|
nr = 4
|
|
|
|
|
R = S.tocov_matrix(nr, Nt-1, dt)
|
|
|
|
|
|
|
|
|
|
#ulev = linspace(*paramu)
|
|
|
|
|
#vlev = linspace(*paramu)
|
|
|
|
|
|
|
|
|
|
trdata = g.trdata()
|
|
|
|
|
Tg = trdata.args
|
|
|
|
|
Xg = trdata.data
|
|
|
|
|
|
|
|
|
|
cov2mod.initinteg(EPS, EPSS, EPS0, C, IAC, ISQ)
|
|
|
|
|
uvdens = cov2mod.cov2mmpdfreg(t, R, h, h, Tg, Xg, nit)
|
|
|
|
|
|
|
|
|
|
dh = h[1]-h[0]
|
|
|
|
|
uvdens *= dh*dh
|
|
|
|
|
|
|
|
|
|
# if (defnr==0)
|
|
|
|
|
# f.f =fliplr(mctp2rfc(fliplr(ftmp)));%* sqrt(-R(1,6)/R(1,4))/2/pi;
|
|
|
|
|
# f.title ='Joint density of maximum and rainflow minimum';
|
|
|
|
|
# f.labx{1}='max [m]';
|
|
|
|
|
# f.labx{2}='rainflow min [m]';
|
|
|
|
|
# elseif (defnr==-1)
|
|
|
|
|
# %CC= normalizing constant= 1/ expected number of u-up-crossings of X
|
|
|
|
|
# %CC = 2*pi*sqrt(L0/L2)*exp(0.5D0*u*u/L0);
|
|
|
|
|
# % CC = normalizing constant = 1/ expected number of zero-up-crossings of X'
|
|
|
|
|
# %CC = 2*pi*sqrt(L2/L4);
|
|
|
|
|
# fact = sqrt(L0/L4);
|
|
|
|
|
#
|
|
|
|
|
# f.f = fliplr(mctp2tc(fliplr(ftmp*fact),utc,paramu));
|
|
|
|
|
# index1 = find(f.x{1}>0);
|
|
|
|
|
# index2 = find(f.x{2}<0);
|
|
|
|
|
# f.f = flipud(f.f(index2,index1));
|
|
|
|
|
# f.x{1} = f.x{1}(index1);
|
|
|
|
|
# f.x{2} = abs(flipud(f.x{2}(index2)));
|
|
|
|
|
# f.title ='Joint density of crest and trough';
|
|
|
|
|
# f.labx{1}='Crest [m]';
|
|
|
|
|
# f.labx{2}='Trough [m]';
|
|
|
|
|
# else %(defnr==1)
|
|
|
|
|
mmpdf = WafoData(uvdens,args=(h,h), title='Joint density of maximum and minimum',
|
|
|
|
|
xlab='max [m]',ylab='min [m]')
|
|
|
|
|
return mmpdf
|
|
|
|
|
|
|
|
|
|
#[f.cl,f.pl] = qlevels(f.f,[10, 30, 50, 70, 90, 95, 99, 99.9],f.x{1},f.x{2})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_t_pdf(self, u=None, pdef='Tc', paramt=None, **options):
|
|
|
|
|
'''
|
|
|
|
@ -1254,7 +1367,7 @@ class SpecData1D(WafoData):
|
|
|
|
|
indI[3] = Ntd - 1
|
|
|
|
|
|
|
|
|
|
#% positive wave period
|
|
|
|
|
BIG = self._covinput(pt, R)
|
|
|
|
|
BIG = self._covinput_t_pdf(pt, R)
|
|
|
|
|
|
|
|
|
|
tmp = rind(BIG, ex[:Ntdc], B_lo, B_up, indI, xc, Nt)
|
|
|
|
|
f[pt], err[pt] = tmp[:2]
|
|
|
|
@ -1279,7 +1392,7 @@ class SpecData1D(WafoData):
|
|
|
|
|
return pdf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _covinput(self, pt, R):
|
|
|
|
|
def _covinput_t_pdf(self, pt, R):
|
|
|
|
|
"""
|
|
|
|
|
Return covariance matrix for Tc or Tt period problems
|
|
|
|
|
|
|
|
|
@ -1813,7 +1926,7 @@ class SpecData1D(WafoData):
|
|
|
|
|
svec = rvec + 1J * ivec
|
|
|
|
|
else:
|
|
|
|
|
amp = amp.T
|
|
|
|
|
svec=[]
|
|
|
|
|
svec = []
|
|
|
|
|
for i in range(cases):
|
|
|
|
|
rvec, ivec = c_library.disufq(amp[i].real, amp[i].imag, w, kw, water_depth,
|
|
|
|
|
g, nmin, nmax, 1, ns)
|
|
|
|
@ -2329,7 +2442,7 @@ class SpecData1D(WafoData):
|
|
|
|
|
#%wnc = min(wnNew,wnOld-1e-5)
|
|
|
|
|
wnc = wnNew
|
|
|
|
|
#specfun = lambda xi : stineman_interp(xi, w, S1)
|
|
|
|
|
specfun = interpolate.interp1d(w,S1, kind='cubic')
|
|
|
|
|
specfun = interpolate.interp1d(w, S1, kind='cubic')
|
|
|
|
|
x, unused_y = discretize(specfun, 0, wnc)
|
|
|
|
|
dwMin = minimum(min(diff(x)), dwMin)
|
|
|
|
|
|
|
|
|
@ -2437,9 +2550,9 @@ class SpecData1D(WafoData):
|
|
|
|
|
'''
|
|
|
|
|
m, unused_mtxt = self.moment(nr=4, even=False)
|
|
|
|
|
|
|
|
|
|
fact_dict=dict(alpha=0,eps2=1,eps4=3,qp=3,Qp=3)
|
|
|
|
|
fun = lambda fact: fact_dict.get(fact,fact)
|
|
|
|
|
fact = atleast_1d(map(fun,list(factors)))
|
|
|
|
|
fact_dict = dict(alpha=0, eps2=1, eps4=3, qp=3, Qp=3)
|
|
|
|
|
fun = lambda fact: fact_dict.get(fact, fact)
|
|
|
|
|
fact = atleast_1d(map(fun, list(factors)))
|
|
|
|
|
|
|
|
|
|
#fact = atleast_1d(fact)
|
|
|
|
|
alpha = m[2] / sqrt(m[0] * m[4])
|
|
|
|
@ -2793,13 +2906,13 @@ class SpecData2D(WafoData):
|
|
|
|
|
|
|
|
|
|
def toacf(self):
|
|
|
|
|
pass
|
|
|
|
|
def tospecdata(self,type=None):
|
|
|
|
|
def tospecdata(self, type=None):
|
|
|
|
|
pass
|
|
|
|
|
def sim(self):
|
|
|
|
|
pass
|
|
|
|
|
def sim_nl(self):
|
|
|
|
|
pass
|
|
|
|
|
def rotate(self, phi=0,rotateGrid=False,method='linear'):
|
|
|
|
|
def rotate(self, phi=0, rotateGrid=False, method='linear'):
|
|
|
|
|
'''
|
|
|
|
|
Rotate spectrum clockwise around the origin.
|
|
|
|
|
|
|
|
|
@ -2837,58 +2950,58 @@ class SpecData2D(WafoData):
|
|
|
|
|
#Snew=S;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.phi = mod(self.phi+phi+pi,2*pi)-pi
|
|
|
|
|
self.phi = mod(self.phi + phi + pi, 2 * pi) - pi
|
|
|
|
|
stype = self.type.lower()[-3::]
|
|
|
|
|
if stype=='dir':
|
|
|
|
|
if stype == 'dir':
|
|
|
|
|
#% any of the directinal types
|
|
|
|
|
#% Make sure theta is from -pi to pi
|
|
|
|
|
theta = self.args[0]
|
|
|
|
|
phi0 = theta[0]+pi;
|
|
|
|
|
self.args[0] = theta-phi0
|
|
|
|
|
phi0 = theta[0] + pi;
|
|
|
|
|
self.args[0] = theta - phi0
|
|
|
|
|
|
|
|
|
|
# make sure -pi<phi<pi
|
|
|
|
|
self.phi = mod(self.phi+phi0+pi,2*pi)-pi
|
|
|
|
|
if (rotateGrid and (self.phi!=0)):
|
|
|
|
|
self.phi = mod(self.phi + phi0 + pi, 2 * pi) - pi
|
|
|
|
|
if (rotateGrid and (self.phi != 0)):
|
|
|
|
|
# Do a physical rotation of spectrum
|
|
|
|
|
#theta = Snew.args[0]
|
|
|
|
|
ntOld = len(theta);
|
|
|
|
|
if (mod(theta[0]-theta[-1],2*pi)==0):
|
|
|
|
|
nt = ntOld-1
|
|
|
|
|
if (mod(theta[0] - theta[-1], 2 * pi) == 0):
|
|
|
|
|
nt = ntOld - 1
|
|
|
|
|
else:
|
|
|
|
|
nt = ntOld
|
|
|
|
|
|
|
|
|
|
theta[0:nt] = mod(theta[0:nt]-self.phi+pi,2*pi)-pi
|
|
|
|
|
theta[0:nt] = mod(theta[0:nt] - self.phi + pi, 2 * pi) - pi
|
|
|
|
|
self.phi = 0
|
|
|
|
|
ind = theta.argsort()
|
|
|
|
|
self.data = self.data[ind,:]
|
|
|
|
|
self.data = self.data[ind, :]
|
|
|
|
|
self.args[0] = theta[ind]
|
|
|
|
|
if (nt<ntOld):
|
|
|
|
|
if (self.args[0][0]==-pi):
|
|
|
|
|
self.data[ntOld,:] = self.data[0,:]
|
|
|
|
|
if (nt < ntOld):
|
|
|
|
|
if (self.args[0][0] == -pi):
|
|
|
|
|
self.data[ntOld, :] = self.data[0, :]
|
|
|
|
|
else:
|
|
|
|
|
#ftype = self.freqtype
|
|
|
|
|
freq = self.args[1]
|
|
|
|
|
theta = linspace(-pi,pi,ntOld)
|
|
|
|
|
[F,T] = meshgrid(freq,theta)
|
|
|
|
|
|
|
|
|
|
dtheta = self.theta[1]-self.theta[0]
|
|
|
|
|
self.theta[nt] = self.theta[nt-1]+dtheta;
|
|
|
|
|
self.data[nt,:] = self.data[0,:]
|
|
|
|
|
self.data = interp2(freq,np.vstack([self.theta[0]-dtheta,self.theta]),
|
|
|
|
|
np.vstack([self.data[nt,:],self.data]),F,T,method)
|
|
|
|
|
theta = linspace(-pi, pi, ntOld)
|
|
|
|
|
[F, T] = meshgrid(freq, theta)
|
|
|
|
|
|
|
|
|
|
dtheta = self.theta[1] - self.theta[0]
|
|
|
|
|
self.theta[nt] = self.theta[nt - 1] + dtheta;
|
|
|
|
|
self.data[nt, :] = self.data[0, :]
|
|
|
|
|
self.data = interp2(freq, np.vstack([self.theta[0] - dtheta, self.theta]),
|
|
|
|
|
np.vstack([self.data[nt, :], self.data]), F, T, method)
|
|
|
|
|
self.args[0] = theta
|
|
|
|
|
|
|
|
|
|
elif stype=='k2d':
|
|
|
|
|
elif stype == 'k2d':
|
|
|
|
|
#any of the 2D wave number types
|
|
|
|
|
#Snew.phi = mod(Snew.phi+phi+pi,2*pi)-pi;
|
|
|
|
|
if (rotateGrid and (self.phi!=0)):
|
|
|
|
|
if (rotateGrid and (self.phi != 0)):
|
|
|
|
|
# Do a physical rotation of spectrum
|
|
|
|
|
|
|
|
|
|
[k,k2] = meshgrid(*self.args)
|
|
|
|
|
[th,r] = cart2pol(k,k2)
|
|
|
|
|
[k,k2] = pol2cart(th+self.phi,r)
|
|
|
|
|
[k, k2] = meshgrid(*self.args)
|
|
|
|
|
[th, r] = cart2pol(k, k2)
|
|
|
|
|
[k, k2] = pol2cart(th + self.phi, r)
|
|
|
|
|
ki1, ki2 = self.args
|
|
|
|
|
Sn = interp2(ki1,ki2,self.data,k,k2,method)
|
|
|
|
|
Sn = interp2(ki1, ki2, self.data, k, k2, method)
|
|
|
|
|
self.data = np.where(np.isnan(Sn), 0, Sn)
|
|
|
|
|
|
|
|
|
|
self.phi = 0;
|
|
|
|
@ -2958,107 +3071,107 @@ class SpecData2D(WafoData):
|
|
|
|
|
if self.type not in two_dim_spectra:
|
|
|
|
|
raise ValueError('Unknown 2D spectrum type!')
|
|
|
|
|
|
|
|
|
|
if vari==None and nr<=1:
|
|
|
|
|
vari='x'
|
|
|
|
|
elif vari==None:
|
|
|
|
|
vari='xt'
|
|
|
|
|
if vari == None and nr <= 1:
|
|
|
|
|
vari = 'x'
|
|
|
|
|
elif vari == None:
|
|
|
|
|
vari = 'xt'
|
|
|
|
|
else: #% secure the mutual order ('xyt')
|
|
|
|
|
vari=''.join(sorted(vari.lower()))
|
|
|
|
|
Nv=len(vari)
|
|
|
|
|
vari = ''.join(sorted(vari.lower()))
|
|
|
|
|
Nv = len(vari)
|
|
|
|
|
|
|
|
|
|
if vari[0]=='t' and Nv>1:
|
|
|
|
|
vari = vari[1::]+ vari[0]
|
|
|
|
|
if vari[0] == 't' and Nv > 1:
|
|
|
|
|
vari = vari[1::] + vari[0]
|
|
|
|
|
|
|
|
|
|
Nv = len(vari)
|
|
|
|
|
|
|
|
|
|
if not self.type.endswith('dir'):
|
|
|
|
|
S1 = self.tospecdata(self.type[:-2]+'dir')
|
|
|
|
|
S1 = self.tospecdata(self.type[:-2] + 'dir')
|
|
|
|
|
else:
|
|
|
|
|
S1 = self
|
|
|
|
|
w = ravel(S1.args[0])
|
|
|
|
|
theta = S1.args[1]-S1.phi
|
|
|
|
|
theta = S1.args[1] - S1.phi
|
|
|
|
|
S = S1.data
|
|
|
|
|
Sw = simps(S,x=theta,axis=0)
|
|
|
|
|
m = [simps(Sw,x=w)]
|
|
|
|
|
mtext=['m0']
|
|
|
|
|
Sw = simps(S, x=theta, axis=0)
|
|
|
|
|
m = [simps(Sw, x=w)]
|
|
|
|
|
mtext = ['m0']
|
|
|
|
|
|
|
|
|
|
if nr>0:
|
|
|
|
|
if nr > 0:
|
|
|
|
|
vec = []
|
|
|
|
|
g = np.atleast_1d(S1.__dict__.get('g', gravity()))
|
|
|
|
|
kx=w**2/g[0] # maybe different normalization in x and y => diff. g
|
|
|
|
|
ky=w**2/g[-1]
|
|
|
|
|
kx = w ** 2 / g[0] # maybe different normalization in x and y => diff. g
|
|
|
|
|
ky = w ** 2 / g[-1]
|
|
|
|
|
|
|
|
|
|
nw=w.size
|
|
|
|
|
nw = w.size
|
|
|
|
|
|
|
|
|
|
if 'x' in vari:
|
|
|
|
|
ct = np.cos(theta[:,None])
|
|
|
|
|
Sc = simps(S*ct,x=theta, axis=0)
|
|
|
|
|
vec.append(kx*Sc)
|
|
|
|
|
ct = np.cos(theta[:, None])
|
|
|
|
|
Sc = simps(S * ct, x=theta, axis=0)
|
|
|
|
|
vec.append(kx * Sc)
|
|
|
|
|
mtext.append('mx')
|
|
|
|
|
if 'y' in vari:
|
|
|
|
|
st = np.sin(theta[:,None])
|
|
|
|
|
Ss = simps(S*st,x=theta, axis=0)
|
|
|
|
|
vec.append(ky*Ss)
|
|
|
|
|
st = np.sin(theta[:, None])
|
|
|
|
|
Ss = simps(S * st, x=theta, axis=0)
|
|
|
|
|
vec.append(ky * Ss)
|
|
|
|
|
mtext.append('my')
|
|
|
|
|
if 't' in vari:
|
|
|
|
|
vec.append(w*Sw)
|
|
|
|
|
vec.append(w * Sw)
|
|
|
|
|
mtext.append('mt')
|
|
|
|
|
|
|
|
|
|
if nr>1:
|
|
|
|
|
if nr > 1:
|
|
|
|
|
if 'x' in vari:
|
|
|
|
|
Sc2 = simps(S*ct**2,x=theta, axis=0)
|
|
|
|
|
vec.append(kx**2*Sc2)
|
|
|
|
|
Sc2 = simps(S * ct ** 2, x=theta, axis=0)
|
|
|
|
|
vec.append(kx ** 2 * Sc2)
|
|
|
|
|
mtext.append('mxx')
|
|
|
|
|
if 'y' in vari:
|
|
|
|
|
Ss2 = simps(S*st**2,x=theta, axis=0)
|
|
|
|
|
vec.append(ky**2*Ss2)
|
|
|
|
|
Ss2 = simps(S * st ** 2, x=theta, axis=0)
|
|
|
|
|
vec.append(ky ** 2 * Ss2)
|
|
|
|
|
mtext.append('myy')
|
|
|
|
|
if 't' in vari:
|
|
|
|
|
vec.append(w**2*Sw)
|
|
|
|
|
vec.append(w ** 2 * Sw)
|
|
|
|
|
mtext.append('mtt')
|
|
|
|
|
if 'x' in vari and 'y' in vari:
|
|
|
|
|
Scs = simps(S*ct*st,x=theta, axis=0)
|
|
|
|
|
vec.append(kx*ky*Scs)
|
|
|
|
|
Scs = simps(S * ct * st, x=theta, axis=0)
|
|
|
|
|
vec.append(kx * ky * Scs)
|
|
|
|
|
mtext.append('mxy')
|
|
|
|
|
if 'x' in vari and 't' in vari:
|
|
|
|
|
vec.append(kx*w*Sc)
|
|
|
|
|
vec.append(kx * w * Sc)
|
|
|
|
|
mtext.append('mxt')
|
|
|
|
|
if 'y' in vari and 't' in vari:
|
|
|
|
|
vec.append(ky*w*Sc)
|
|
|
|
|
vec.append(ky * w * Sc)
|
|
|
|
|
mtext.append('myt')
|
|
|
|
|
|
|
|
|
|
if nr>3:
|
|
|
|
|
if nr > 3:
|
|
|
|
|
if 'x' in vari:
|
|
|
|
|
Sc3 = simps(S*ct**3,x=theta, axis=0)
|
|
|
|
|
Sc4 = simps(S*ct**4,x=theta, axis=0)
|
|
|
|
|
vec.append(kx**4*Sc4)
|
|
|
|
|
Sc3 = simps(S * ct ** 3, x=theta, axis=0)
|
|
|
|
|
Sc4 = simps(S * ct ** 4, x=theta, axis=0)
|
|
|
|
|
vec.append(kx ** 4 * Sc4)
|
|
|
|
|
mtext.append('mxxxx')
|
|
|
|
|
if 'y' in vari:
|
|
|
|
|
Ss3 = simps(S*st**3,x=theta, axis=0)
|
|
|
|
|
Ss4 = simps(S*st**4,x=theta, axis=0)
|
|
|
|
|
vec.append(ky**4*Ss4)
|
|
|
|
|
Ss3 = simps(S * st ** 3, x=theta, axis=0)
|
|
|
|
|
Ss4 = simps(S * st ** 4, x=theta, axis=0)
|
|
|
|
|
vec.append(ky ** 4 * Ss4)
|
|
|
|
|
mtext.append('myyyy')
|
|
|
|
|
if 't' in vari:
|
|
|
|
|
vec.append(w**4*Sw)
|
|
|
|
|
vec.append(w ** 4 * Sw)
|
|
|
|
|
mtext.append('mtttt')
|
|
|
|
|
|
|
|
|
|
if 'x' in vari and 'y' in vari:
|
|
|
|
|
Sc2s = simps(S*ct**2*st,x=theta, axis=0)
|
|
|
|
|
Sc3s = simps(S*ct**3*st,x=theta, axis=0)
|
|
|
|
|
Scs2 = simps(S*ct*st**2,x=theta, axis=0)
|
|
|
|
|
Scs3 = simps(S*ct*st**3,x=theta, axis=0)
|
|
|
|
|
Sc2s2 = simps(S*ct**2*st**2,x=theta, axis=0)
|
|
|
|
|
vec.extend((kx**3*ky*Sc3s,kx**2*ky**2*Sc2s2, kx*ky**3*Scs3))
|
|
|
|
|
mtext.extend(('mxxxy','mxxyy','mxyyy'))
|
|
|
|
|
Sc2s = simps(S * ct ** 2 * st, x=theta, axis=0)
|
|
|
|
|
Sc3s = simps(S * ct ** 3 * st, x=theta, axis=0)
|
|
|
|
|
Scs2 = simps(S * ct * st ** 2, x=theta, axis=0)
|
|
|
|
|
Scs3 = simps(S * ct * st ** 3, x=theta, axis=0)
|
|
|
|
|
Sc2s2 = simps(S * ct ** 2 * st ** 2, x=theta, axis=0)
|
|
|
|
|
vec.extend((kx ** 3 * ky * Sc3s, kx ** 2 * ky ** 2 * Sc2s2, kx * ky ** 3 * Scs3))
|
|
|
|
|
mtext.extend(('mxxxy', 'mxxyy', 'mxyyy'))
|
|
|
|
|
if 'x' in vari and 't' in vari:
|
|
|
|
|
vec.extend((kx**3*w*Sc3, kx**2*w**2*Sc2, kx*w**3*Sc))
|
|
|
|
|
mtext.extend(('mxxxt','mxxtt','mxttt'))
|
|
|
|
|
vec.extend((kx ** 3 * w * Sc3, kx ** 2 * w ** 2 * Sc2, kx * w ** 3 * Sc))
|
|
|
|
|
mtext.extend(('mxxxt', 'mxxtt', 'mxttt'))
|
|
|
|
|
if 'y' in vari and 't' in vari:
|
|
|
|
|
vec.extend((ky**3*w*Ss3, ky**2*w**2*Ss2, ky*w**3*Ss))
|
|
|
|
|
mtext.extend(('myyyt','myytt','myttt'))
|
|
|
|
|
vec.extend((ky ** 3 * w * Ss3, ky ** 2 * w ** 2 * Ss2, ky * w ** 3 * Ss))
|
|
|
|
|
mtext.extend(('myyyt', 'myytt', 'myttt'))
|
|
|
|
|
if 'x' in vari and 'y' in vari and 't' in vari:
|
|
|
|
|
vec.extend((kx**2*ky*w*Sc2s, kx*ky**2*w*Scs2, kx*ky*w**2*Scs))
|
|
|
|
|
mtext.extend(('mxxyt','mxyyt','mxytt'))
|
|
|
|
|
vec.extend((kx ** 2 * ky * w * Sc2s, kx * ky ** 2 * w * Scs2, kx * ky * w ** 2 * Scs))
|
|
|
|
|
mtext.extend(('mxxyt', 'mxyyt', 'mxytt'))
|
|
|
|
|
#end % if nr>1
|
|
|
|
|
m.extend([simps(vals, x=w) for vals in vec])
|
|
|
|
|
return np.asarray(m), mtext
|
|
|
|
|