Ongoing work
parent
8242a74b60
commit
745237a4c0
@ -1,206 +0,0 @@
|
|||||||
"""
|
|
||||||
Dispersion relation module
|
|
||||||
--------------------------
|
|
||||||
k2w - Translates from wave number to frequency
|
|
||||||
w2k - Translates from frequency to wave number
|
|
||||||
"""
|
|
||||||
import warnings
|
|
||||||
#import numpy as np
|
|
||||||
from numpy import (atleast_1d, sqrt, ones_like, zeros_like, arctan2, where, tanh, any, #@UnresolvedImport
|
|
||||||
sin, cos, sign, inf, flatnonzero, finfo, cosh, abs) #@UnresolvedImport
|
|
||||||
|
|
||||||
__all__ = ['k2w', 'w2k']
|
|
||||||
|
|
||||||
def k2w(k1, k2=0e0, h=inf, g=9.81, u1=0e0, u2=0e0):
|
|
||||||
''' Translates from wave number to frequency
|
|
||||||
using the dispersion relation
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
k1 : array-like
|
|
||||||
wave numbers [rad/m].
|
|
||||||
k2 : array-like, optional
|
|
||||||
second dimension wave number
|
|
||||||
h : real scalar, optional
|
|
||||||
water depth [m].
|
|
||||||
g : real scalar, optional
|
|
||||||
acceleration of gravity, see gravity
|
|
||||||
u1, u2 : real scalars, optional
|
|
||||||
current velocity [m/s] along dimension 1 and 2.
|
|
||||||
note: when u1!=0 | u2!=0 then theta is not calculated correctly
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
w : ndarray
|
|
||||||
angular frequency [rad/s].
|
|
||||||
theta : ndarray
|
|
||||||
direction [rad].
|
|
||||||
|
|
||||||
Dispersion relation
|
|
||||||
-------------------
|
|
||||||
w = sqrt(g*K*tanh(K*h)) ( 0 < w < inf)
|
|
||||||
theta = arctan2(k2,k1) (-pi < theta < pi)
|
|
||||||
where
|
|
||||||
K = sqrt(k1**2+k2**2)
|
|
||||||
|
|
||||||
The shape of w and theta is the common shape of k1 and k2 according to the
|
|
||||||
numpy broadcasting rules.
|
|
||||||
|
|
||||||
See also
|
|
||||||
--------
|
|
||||||
w2k
|
|
||||||
|
|
||||||
Example
|
|
||||||
-------
|
|
||||||
>>> from numpy import arange
|
|
||||||
>>> import wafo.spectrum.dispersion_relation as wsd
|
|
||||||
>>> wsd.k2w(arange(0.01,.5,0.2))[0]
|
|
||||||
array([ 0.3132092 , 1.43530485, 2.00551739])
|
|
||||||
>>> wsd.k2w(arange(0.01,.5,0.2),h=20)[0]
|
|
||||||
array([ 0.13914927, 1.43498213, 2.00551724])
|
|
||||||
'''
|
|
||||||
|
|
||||||
k1i, k2i, hi, gi, u1i, u2i = atleast_1d(k1, k2, h, g, u1, u2)
|
|
||||||
|
|
||||||
if k1i.size == 0:
|
|
||||||
return zeros_like(k1i)
|
|
||||||
ku1 = k1i*u1i
|
|
||||||
ku2 = k2i*u2i
|
|
||||||
|
|
||||||
theta = arctan2(k2, k1)
|
|
||||||
|
|
||||||
k = sqrt(k1i**2+k2i**2)
|
|
||||||
w = where(k>0, ku1+ku2+sqrt(gi*k*tanh(k*hi)), 0.0)
|
|
||||||
|
|
||||||
cond = (w<0)
|
|
||||||
if any(cond):
|
|
||||||
txt0 = '''
|
|
||||||
Waves and current are in opposite directions
|
|
||||||
making some of the frequencies negative.
|
|
||||||
Here we are forcing the negative frequencies to zero.
|
|
||||||
'''
|
|
||||||
warnings.warn(txt0)
|
|
||||||
w = where(cond, 0.0, w) # force w to zero
|
|
||||||
|
|
||||||
return w, theta
|
|
||||||
|
|
||||||
def w2k(w, theta=0.0, h=inf, g=9.81, count_limit=100):
|
|
||||||
'''
|
|
||||||
Translates from frequency to wave number
|
|
||||||
using the dispersion relation
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
w : array-like
|
|
||||||
angular frequency [rad/s].
|
|
||||||
theta : array-like, optional
|
|
||||||
direction [rad].
|
|
||||||
h : real scalar, optional
|
|
||||||
water depth [m].
|
|
||||||
g : real scalar or array-like of size 2.
|
|
||||||
constant of gravity [m/s**2] or 3D normalizing constant
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
k1, k2 : ndarray
|
|
||||||
wave numbers [rad/m] along dimension 1 and 2.
|
|
||||||
|
|
||||||
Description
|
|
||||||
-----------
|
|
||||||
Uses Newton Raphson method to find the wave number k in the dispersion relation
|
|
||||||
w**2= g*k*tanh(k*h).
|
|
||||||
The solution k(w) => k1 = k(w)*cos(theta)
|
|
||||||
k2 = k(w)*sin(theta)
|
|
||||||
The size of k1,k2 is the common shape of w and theta according to numpy
|
|
||||||
broadcasting rules. If w or theta is scalar it functions as a constant
|
|
||||||
matrix of the same shape as the other.
|
|
||||||
|
|
||||||
Example
|
|
||||||
-------
|
|
||||||
>>> import pylab as plb
|
|
||||||
>>> import wafo.spectrum.dispersion_relation as wsd
|
|
||||||
>>> w = plb.linspace(0,3);
|
|
||||||
>>> h = plb.plot(w,w2k(w)[0])
|
|
||||||
>>> wsd.w2k(range(4))[0]
|
|
||||||
array([ 0. , 0.1019368 , 0.4077472 , 0.91743119])
|
|
||||||
>>> wsd.w2k(range(4),h=20)[0]
|
|
||||||
array([ 0. , 0.10503601, 0.40774726, 0.91743119])
|
|
||||||
|
|
||||||
>>> plb.close('all')
|
|
||||||
|
|
||||||
See also
|
|
||||||
--------
|
|
||||||
k2w
|
|
||||||
'''
|
|
||||||
wi, th, hi, gi = atleast_1d(w, theta, h, g)
|
|
||||||
|
|
||||||
if wi.size == 0:
|
|
||||||
return zeros_like(wi)
|
|
||||||
|
|
||||||
k = 1.0*sign(wi)*wi**2.0 / gi[0] # deep water
|
|
||||||
if (hi > 10. ** 25).all():
|
|
||||||
k2 = k*sin(th)*gi[0]/gi[-1] #size np x nf
|
|
||||||
k1 = k*cos(th)
|
|
||||||
return k1, k2
|
|
||||||
|
|
||||||
|
|
||||||
if gi.size > 1:
|
|
||||||
txt0 = '''
|
|
||||||
Finite depth in combination with 3D normalization (len(g)=2) is not implemented yet.
|
|
||||||
'''
|
|
||||||
raise ValueError(txt0)
|
|
||||||
|
|
||||||
|
|
||||||
find = flatnonzero
|
|
||||||
eps = finfo(float).eps
|
|
||||||
|
|
||||||
oshape = k.shape
|
|
||||||
wi, k, hi = wi.ravel(), k.ravel(), hi.ravel()
|
|
||||||
|
|
||||||
# Newton's Method
|
|
||||||
# Permit no more than count_limit iterations.
|
|
||||||
hi = hi * ones_like(k)
|
|
||||||
hn = zeros_like(k)
|
|
||||||
ix = find((wi<0) | (0<wi))
|
|
||||||
|
|
||||||
# Break out of the iteration loop for three reasons:
|
|
||||||
# 1) the last update is very small (compared to x)
|
|
||||||
# 2) the last update is very small (compared to sqrt(eps))
|
|
||||||
# 3) There are more than 100 iterations. This should NEVER happen.
|
|
||||||
count = 0
|
|
||||||
while (ix.size>0 and count < count_limit):
|
|
||||||
ki = k[ix]
|
|
||||||
kh = ki * hi[ix]
|
|
||||||
hn[ix] = (ki*tanh(kh)-wi[ix]**2.0/gi)/(tanh(kh)+kh/(cosh(kh)**2.0))
|
|
||||||
knew = ki - hn[ix]
|
|
||||||
# Make sure that the current guess is not zero.
|
|
||||||
# When Newton's Method suggests steps that lead to zero guesses
|
|
||||||
# take a step 9/10ths of the way to zero:
|
|
||||||
ksmall = find(abs(knew)==0)
|
|
||||||
if ksmall.size>0:
|
|
||||||
knew[ksmall] = ki[ksmall] / 10.0
|
|
||||||
hn[ix[ksmall]] = ki[ksmall]-knew[ksmall]
|
|
||||||
|
|
||||||
k[ix] = knew
|
|
||||||
# disp(['Iteration ',num2str(count),' Number of points left: ' num2str(length(ix)) ]),
|
|
||||||
|
|
||||||
ix = find((abs(hn) > sqrt(eps)*abs(k)) * abs(hn) > sqrt(eps))
|
|
||||||
count += 1
|
|
||||||
|
|
||||||
if count == count_limit:
|
|
||||||
txt1 = ''' W2K did not converge.
|
|
||||||
The maximum error in the last step was: %13.8f''' % max(hn[ix])
|
|
||||||
warnings.warn(txt1)
|
|
||||||
|
|
||||||
k.shape = oshape
|
|
||||||
|
|
||||||
k2 = k*sin(th)
|
|
||||||
k1 = k*cos(th)
|
|
||||||
return k1, k2
|
|
||||||
|
|
||||||
def main():
|
|
||||||
import doctest
|
|
||||||
doctest.testmod()
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
Loading…
Reference in New Issue