Updated from wafo.stats from scipy.stats

master
Per.Andreas.Brodtkorb 11 years ago
parent 5c84825641
commit 6b88f2d4cc

@ -1,12 +1,346 @@
"""
Statistics package in WAFO Toolbox.
==========================================
Statistical functions (:mod:`scipy.stats`)
==========================================
Readme - Readme file for module STATS in WAFO Toolbox
.. module:: scipy.stats
This module contains a large number of probability distributions as
well as a growing library of statistical functions.
Each included distribution is an instance of the class rv_continous:
For each given name the following methods are available:
.. autosummary::
:toctree: generated/
rv_continuous
rv_continuous.pdf
rv_continuous.logpdf
rv_continuous.cdf
rv_continuous.logcdf
rv_continuous.sf
rv_continuous.logsf
rv_continuous.ppf
rv_continuous.isf
rv_continuous.moment
rv_continuous.stats
rv_continuous.entropy
rv_continuous.fit
rv_continuous.expect
Calling the instance as a function returns a frozen pdf whose shape,
location, and scale parameters are fixed.
Similarly, each discrete distribution is an instance of the class
rv_discrete:
.. autosummary::
:toctree: generated/
rv_discrete
rv_discrete.rvs
rv_discrete.pmf
rv_discrete.logpmf
rv_discrete.cdf
rv_discrete.logcdf
rv_discrete.sf
rv_discrete.logsf
rv_discrete.ppf
rv_discrete.isf
rv_discrete.stats
rv_discrete.moment
rv_discrete.entropy
rv_discrete.expect
Continuous distributions
========================
.. autosummary::
:toctree: generated/
alpha -- Alpha
anglit -- Anglit
arcsine -- Arcsine
beta -- Beta
betaprime -- Beta Prime
bradford -- Bradford
burr -- Burr
cauchy -- Cauchy
chi -- Chi
chi2 -- Chi-squared
cosine -- Cosine
dgamma -- Double Gamma
dweibull -- Double Weibull
erlang -- Erlang
expon -- Exponential
exponweib -- Exponentiated Weibull
exponpow -- Exponential Power
f -- F (Snecdor F)
fatiguelife -- Fatigue Life (Birnbaum-Sanders)
fisk -- Fisk
foldcauchy -- Folded Cauchy
foldnorm -- Folded Normal
frechet_r -- Frechet Right Sided, Extreme Value Type II (Extreme LB) or weibull_min
frechet_l -- Frechet Left Sided, Weibull_max
genlogistic -- Generalized Logistic
genpareto -- Generalized Pareto
genexpon -- Generalized Exponential
genextreme -- Generalized Extreme Value
gausshyper -- Gauss Hypergeometric
gamma -- Gamma
gengamma -- Generalized gamma
genhalflogistic -- Generalized Half Logistic
gilbrat -- Gilbrat
gompertz -- Gompertz (Truncated Gumbel)
gumbel_r -- Right Sided Gumbel, Log-Weibull, Fisher-Tippett, Extreme Value Type I
gumbel_l -- Left Sided Gumbel, etc.
halfcauchy -- Half Cauchy
halflogistic -- Half Logistic
halfnorm -- Half Normal
hypsecant -- Hyperbolic Secant
invgamma -- Inverse Gamma
invgauss -- Inverse Gaussian
invweibull -- Inverse Weibull
johnsonsb -- Johnson SB
johnsonsu -- Johnson SU
ksone -- Kolmogorov-Smirnov one-sided (no stats)
kstwobign -- Kolmogorov-Smirnov two-sided test for Large N (no stats)
laplace -- Laplace
logistic -- Logistic
loggamma -- Log-Gamma
loglaplace -- Log-Laplace (Log Double Exponential)
lognorm -- Log-Normal
lomax -- Lomax (Pareto of the second kind)
maxwell -- Maxwell
mielke -- Mielke's Beta-Kappa
nakagami -- Nakagami
ncx2 -- Non-central chi-squared
ncf -- Non-central F
nct -- Non-central Student's T
norm -- Normal (Gaussian)
pareto -- Pareto
pearson3 -- Pearson type III
powerlaw -- Power-function
powerlognorm -- Power log normal
powernorm -- Power normal
rdist -- R-distribution
reciprocal -- Reciprocal
rayleigh -- Rayleigh
rice -- Rice
recipinvgauss -- Reciprocal Inverse Gaussian
semicircular -- Semicircular
t -- Student's T
triang -- Triangular
truncexpon -- Truncated Exponential
truncnorm -- Truncated Normal
tukeylambda -- Tukey-Lambda
uniform -- Uniform
vonmises -- Von-Mises (Circular)
wald -- Wald
weibull_min -- Minimum Weibull (see Frechet)
weibull_max -- Maximum Weibull (see Frechet)
wrapcauchy -- Wrapped Cauchy
Multivariate distributions
==========================
.. autosummary::
:toctree: generated/
multivariate_normal -- Multivariate normal distribution
Discrete distributions
======================
.. autosummary::
:toctree: generated/
bernoulli -- Bernoulli
binom -- Binomial
boltzmann -- Boltzmann (Truncated Discrete Exponential)
dlaplace -- Discrete Laplacian
geom -- Geometric
hypergeom -- Hypergeometric
logser -- Logarithmic (Log-Series, Series)
nbinom -- Negative Binomial
planck -- Planck (Discrete Exponential)
poisson -- Poisson
randint -- Discrete Uniform
skellam -- Skellam
zipf -- Zipf
Statistical functions
=====================
Several of these functions have a similar version in scipy.stats.mstats
which work for masked arrays.
.. autosummary::
:toctree: generated/
describe -- Descriptive statistics
gmean -- Geometric mean
hmean -- Harmonic mean
kurtosis -- Fisher or Pearson kurtosis
kurtosistest --
mode -- Modal value
moment -- Central moment
normaltest --
skew -- Skewness
skewtest --
tmean -- Truncated arithmetic mean
tvar -- Truncated variance
tmin --
tmax --
tstd --
tsem --
nanmean -- Mean, ignoring NaN values
nanstd -- Standard deviation, ignoring NaN values
nanmedian -- Median, ignoring NaN values
variation -- Coefficient of variation
.. autosummary::
:toctree: generated/
cumfreq _
histogram2 _
histogram _
itemfreq _
percentileofscore _
scoreatpercentile _
relfreq _
.. autosummary::
:toctree: generated/
binned_statistic -- Compute a binned statistic for a set of data.
binned_statistic_2d -- Compute a 2-D binned statistic for a set of data.
binned_statistic_dd -- Compute a d-D binned statistic for a set of data.
.. autosummary::
:toctree: generated/
obrientransform
signaltonoise
bayes_mvs
sem
zmap
zscore
.. autosummary::
:toctree: generated/
threshold
trimboth
trim1
.. autosummary::
:toctree: generated/
f_oneway
pearsonr
spearmanr
pointbiserialr
kendalltau
linregress
.. autosummary::
:toctree: generated/
ttest_1samp
ttest_ind
ttest_rel
kstest
chisquare
power_divergence
ks_2samp
mannwhitneyu
tiecorrect
rankdata
ranksums
wilcoxon
kruskal
friedmanchisquare
.. autosummary::
:toctree: generated/
ansari
bartlett
levene
shapiro
anderson
binom_test
fligner
mood
.. autosummary::
:toctree: generated/
boxcox
boxcox_normmax
boxcox_llf
Contingency table functions
===========================
.. autosummary::
:toctree: generated/
chi2_contingency
contingency.expected_freq
contingency.margins
fisher_exact
Plot-tests
==========
.. autosummary::
:toctree: generated/
ppcc_max
ppcc_plot
probplot
boxcox_normplot
Masked statistics functions
===========================
.. toctree::
stats.mstats
Univariate and multivariate kernel density estimation (:mod:`scipy.stats.kde`)
==============================================================================
.. autosummary::
:toctree: generated/
gaussian_kde
For many more stat related functions install the software R and the
interface package rpy.
"""
from __future__ import division, print_function, absolute_import
from scipy.stats import *
from core import *
import distributions #@Reimport
from wafo.stats.distributions import *
from .core import *
from .stats import *
from .distributions import *
from .rv import *
from .morestats import *
from ._binned_statistic import *
from .kde import gaussian_kde
from . import mstats
from .contingency import chi2_contingency
from ._multivariate import *
from . import estimation
#remove vonmises_cython from __all__, I don't know why it is included
__all__ = [s for s in dir() if not (s.startswith('_') or s.endswith('cython'))]
#import distributions #@Reimport
#from wafo.stats.distributions import *
import estimation

@ -0,0 +1,762 @@
#
# Author: Travis Oliphant 2002-2011 with contributions from
# SciPy Developers 2004-2011
#
from __future__ import division, print_function, absolute_import
from scipy import special
from scipy.special import gammaln as gamln
from numpy import floor, ceil, log, exp, sqrt, log1p, expm1, tanh, cosh, sinh
import numpy as np
import numpy.random as mtrand
from ._distn_infrastructure import (
rv_discrete, _lazywhere, _ncx2_pdf, _ncx2_cdf)
__all__ = [
'binom', 'bernoulli', 'nbinom', 'geom', 'hypergeom',
'logser', 'poisson', 'planck', 'boltzmann', 'randint',
'zipf', 'dlaplace', 'skellam'
]
class binom_gen(rv_discrete):
"""A binomial discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `binom` is::
binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k)
for ``k`` in ``{0, 1,..., n}``.
`binom` takes ``n`` and ``p`` as shape parameters.
%(example)s
"""
def _rvs(self, n, p):
return mtrand.binomial(n, p, self._size)
def _argcheck(self, n, p):
self.b = n
return (n >= 0) & (p >= 0) & (p <= 1)
def _logpmf(self, x, n, p):
k = floor(x)
combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1)))
return combiln + special.xlogy(k, p) + special.xlog1py(n-k, -p)
def _pmf(self, x, n, p):
return exp(self._logpmf(x, n, p))
def _cdf(self, x, n, p):
k = floor(x)
vals = special.bdtr(k, n, p)
return vals
def _sf(self, x, n, p):
k = floor(x)
return special.bdtrc(k, n, p)
def _ppf(self, q, n, p):
vals = ceil(special.bdtrik(q, n, p))
vals1 = vals-1
temp = special.bdtr(vals1, n, p)
return np.where(temp >= q, vals1, vals)
def _stats(self, n, p):
q = 1.0-p
mu = n * p
var = n * p * q
g1 = (q-p) / sqrt(n*p*q)
g2 = (1.0-6*p*q)/(n*p*q)
return mu, var, g1, g2
def _entropy(self, n, p):
k = np.r_[0:n + 1]
vals = self._pmf(k, n, p)
h = -np.sum(special.xlogy(vals, vals), axis=0)
return h
binom = binom_gen(name='binom')
class bernoulli_gen(binom_gen):
"""A Bernoulli discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `bernoulli` is::
bernoulli.pmf(k) = 1-p if k = 0
= p if k = 1
for ``k`` in ``{0, 1}``.
`bernoulli` takes ``p`` as shape parameter.
%(example)s
"""
def _rvs(self, p):
return binom_gen._rvs(self, 1, p)
def _argcheck(self, p):
return (p >= 0) & (p <= 1)
def _logpmf(self, x, p):
return binom._logpmf(x, 1, p)
def _pmf(self, x, p):
return binom._pmf(x, 1, p)
def _cdf(self, x, p):
return binom._cdf(x, 1, p)
def _sf(self, x, p):
return binom._sf(x, 1, p)
def _ppf(self, q, p):
return binom._ppf(q, 1, p)
def _stats(self, p):
return binom._stats(1, p)
def _entropy(self, p):
h = -special.xlogy(p, p) - special.xlogy(1 - p, 1 - p)
return h
bernoulli = bernoulli_gen(b=1, name='bernoulli')
class nbinom_gen(rv_discrete):
"""A negative binomial discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `nbinom` is::
nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k
for ``k >= 0``.
`nbinom` takes ``n`` and ``p`` as shape parameters.
%(example)s
"""
def _rvs(self, n, p):
return mtrand.negative_binomial(n, p, self._size)
def _argcheck(self, n, p):
return (n >= 0) & (p >= 0) & (p <= 1)
def _pmf(self, x, n, p):
return exp(self._logpmf(x, n, p))
def _logpmf(self, x, n, p):
coeff = gamln(n+x) - gamln(x+1) - gamln(n)
return coeff + n*log(p) + x*log1p(-p)
def _cdf(self, x, n, p):
k = floor(x)
return special.betainc(n, k+1, p)
def _sf_skip(self, x, n, p):
# skip because special.nbdtrc doesn't work for 0<n<1
k = floor(x)
return special.nbdtrc(k, n, p)
def _ppf(self, q, n, p):
vals = ceil(special.nbdtrik(q, n, p))
vals1 = (vals-1).clip(0.0, np.inf)
temp = self._cdf(vals1, n, p)
return np.where(temp >= q, vals1, vals)
def _stats(self, n, p):
Q = 1.0 / p
P = Q - 1.0
mu = n*P
var = n*P*Q
g1 = (Q+P)/sqrt(n*P*Q)
g2 = (1.0 + 6*P*Q) / (n*P*Q)
return mu, var, g1, g2
nbinom = nbinom_gen(name='nbinom')
class geom_gen(rv_discrete):
"""A geometric discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `geom` is::
geom.pmf(k) = (1-p)**(k-1)*p
for ``k >= 1``.
`geom` takes ``p`` as shape parameter.
%(example)s
"""
def _rvs(self, p):
return mtrand.geometric(p, size=self._size)
def _argcheck(self, p):
return (p <= 1) & (p >= 0)
def _pmf(self, k, p):
return np.power(1-p, k-1) * p
def _logpmf(self, k, p):
return (k-1)*log1p(-p) + log(p)
def _cdf(self, x, p):
k = floor(x)
return -expm1(log1p(-p)*k)
def _sf(self, x, p):
return np.exp(self._logsf(x, p))
def _logsf(self, x, p):
k = floor(x)
return k*log1p(-p)
def _ppf(self, q, p):
vals = ceil(log1p(-q)/log1p(-p))
temp = self._cdf(vals-1, p)
return np.where((temp >= q) & (vals > 0), vals-1, vals)
def _stats(self, p):
mu = 1.0/p
qr = 1.0-p
var = qr / p / p
g1 = (2.0-p) / sqrt(qr)
g2 = np.polyval([1, -6, 6], p)/(1.0-p)
return mu, var, g1, g2
geom = geom_gen(a=1, name='geom', longname="A geometric")
class hypergeom_gen(rv_discrete):
"""A hypergeometric discrete random variable.
The hypergeometric distribution models drawing objects from a bin.
M is the total number of objects, n is total number of Type I objects.
The random variate represents the number of Type I objects in N drawn
without replacement from the total population.
%(before_notes)s
Notes
-----
The probability mass function is defined as::
pmf(k, M, n, N) = choose(n, k) * choose(M - n, N - k) / choose(M, N),
for max(0, N - (M-n)) <= k <= min(n, N)
Examples
--------
>>> from scipy.stats import hypergeom
Suppose we have a collection of 20 animals, of which 7 are dogs. Then if
we want to know the probability of finding a given number of dogs if we
choose at random 12 of the 20 animals, we can initialize a frozen
distribution and plot the probability mass function:
>>> [M, n, N] = [20, 7, 12]
>>> rv = hypergeom(M, n, N)
>>> x = np.arange(0, n+1)
>>> pmf_dogs = rv.pmf(x)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, pmf_dogs, 'bo')
>>> ax.vlines(x, 0, pmf_dogs, lw=2)
>>> ax.set_xlabel('# of dogs in our group of chosen animals')
>>> ax.set_ylabel('hypergeom PMF')
>>> plt.show()
Instead of using a frozen distribution we can also use `hypergeom`
methods directly. To for example obtain the cumulative distribution
function, use:
>>> prb = hypergeom.cdf(x, M, n, N)
And to generate random numbers:
>>> R = hypergeom.rvs(M, n, N, size=10)
"""
def _rvs(self, M, n, N):
return mtrand.hypergeometric(n, M-n, N, size=self._size)
def _argcheck(self, M, n, N):
cond = rv_discrete._argcheck(self, M, n, N)
cond &= (n <= M) & (N <= M)
self.a = max(N-(M-n), 0)
self.b = min(n, N)
return cond
def _logpmf(self, k, M, n, N):
tot, good = M, n
bad = tot - good
return gamln(good+1) - gamln(good-k+1) - gamln(k+1) + gamln(bad+1) \
- gamln(bad-N+k+1) - gamln(N-k+1) - gamln(tot+1) + gamln(tot-N+1) \
+ gamln(N+1)
def _pmf(self, k, M, n, N):
# same as the following but numerically more precise
# return comb(good, k) * comb(bad, N-k) / comb(tot, N)
return exp(self._logpmf(k, M, n, N))
def _stats(self, M, n, N):
# tot, good, sample_size = M, n, N
# "wikipedia".replace('N', 'M').replace('n', 'N').replace('K', 'n')
M, n, N = 1.*M, 1.*n, 1.*N
m = M - n
p = n/M
mu = N*p
var = m*n*N*(M - N)*1.0/(M*M*(M-1))
g1 = (m - n)*(M-2*N) / (M-2.0) * sqrt((M-1.0) / (m*n*N*(M-N)))
g2 = M*(M+1) - 6.*N*(M-N) - 6.*n*m
g2 *= (M-1)*M*M
g2 += 6.*n*N*(M-N)*m*(5.*M-6)
g2 /= n * N * (M-N) * m * (M-2.) * (M-3.)
return mu, var, g1, g2
def _entropy(self, M, n, N):
k = np.r_[N - (M - n):min(n, N) + 1]
vals = self.pmf(k, M, n, N)
h = -np.sum(special.xlogy(vals, vals), axis=0)
return h
def _sf(self, k, M, n, N):
"""More precise calculation, 1 - cdf doesn't cut it."""
# This for loop is needed because `k` can be an array. If that's the
# case, the sf() method makes M, n and N arrays of the same shape. We
# therefore unpack all inputs args, so we can do the manual
# integration.
res = []
for quant, tot, good, draw in zip(k, M, n, N):
# Manual integration over probability mass function. More accurate
# than integrate.quad.
k2 = np.arange(quant + 1, draw + 1)
res.append(np.sum(self._pmf(k2, tot, good, draw)))
return np.asarray(res)
hypergeom = hypergeom_gen(name='hypergeom')
# FIXME: Fails _cdfvec
class logser_gen(rv_discrete):
"""A Logarithmic (Log-Series, Series) discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `logser` is::
logser.pmf(k) = - p**k / (k*log(1-p))
for ``k >= 1``.
`logser` takes ``p`` as shape parameter.
%(example)s
"""
def _rvs(self, p):
# looks wrong for p>0.5, too few k=1
# trying to use generic is worse, no k=1 at all
return mtrand.logseries(p, size=self._size)
def _argcheck(self, p):
return (p > 0) & (p < 1)
def _pmf(self, k, p):
return -np.power(p, k) * 1.0 / k / log1p(- p)
def _stats(self, p):
r = log1p(-p)
mu = p / (p - 1.0) / r
mu2p = -p / r / (p - 1.0)**2
var = mu2p - mu*mu
mu3p = -p / r * (1.0+p) / (1.0 - p)**3
mu3 = mu3p - 3*mu*mu2p + 2*mu**3
g1 = mu3 / np.power(var, 1.5)
mu4p = -p / r * (
1.0 / (p-1)**2 - 6*p / (p - 1)**3 + 6*p*p / (p-1)**4)
mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4
g2 = mu4 / var**2 - 3.0
return mu, var, g1, g2
logser = logser_gen(a=1, name='logser', longname='A logarithmic')
class poisson_gen(rv_discrete):
"""A Poisson discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `poisson` is::
poisson.pmf(k) = exp(-mu) * mu**k / k!
for ``k >= 0``.
`poisson` takes ``mu`` as shape parameter.
%(example)s
"""
def _rvs(self, mu):
return mtrand.poisson(mu, self._size)
def _logpmf(self, k, mu):
Pk = k*log(mu)-gamln(k+1) - mu
return Pk
def _pmf(self, k, mu):
return exp(self._logpmf(k, mu))
def _cdf(self, x, mu):
k = floor(x)
return special.pdtr(k, mu)
def _sf(self, x, mu):
k = floor(x)
return special.pdtrc(k, mu)
def _ppf(self, q, mu):
vals = ceil(special.pdtrik(q, mu))
vals1 = vals - 1
temp = special.pdtr(vals1, mu)
return np.where((temp >= q), vals1, vals)
def _stats(self, mu):
var = mu
tmp = np.asarray(mu)
g1 = sqrt(1.0 / tmp)
g2 = 1.0 / tmp
return mu, var, g1, g2
poisson = poisson_gen(name="poisson", longname='A Poisson')
class planck_gen(rv_discrete):
"""A Planck discrete exponential random variable.
%(before_notes)s
Notes
-----
The probability mass function for `planck` is::
planck.pmf(k) = (1-exp(-lambda_))*exp(-lambda_*k)
for ``k*lambda_ >= 0``.
`planck` takes ``lambda_`` as shape parameter.
%(example)s
"""
def _argcheck(self, lambda_):
if (lambda_ > 0):
self.a = 0
self.b = np.inf
return 1
elif (lambda_ < 0):
self.a = -np.inf
self.b = 0
return 1
else:
return 0
def _pmf(self, k, lambda_):
fact = -expm1(-lambda_)
return fact * exp(-lambda_ * k)
def _cdf(self, x, lambda_):
k = floor(x)
return - expm1(-lambda_ * (k + 1))
def _ppf(self, q, lambda_):
vals = ceil(-1.0/lambda_ * log1p(-q)-1)
vals1 = (vals-1).clip(self.a, np.inf)
temp = self._cdf(vals1, lambda_)
return np.where(temp >= q, vals1, vals)
def _stats(self, lambda_):
mu = 1/(exp(lambda_)-1)
var = exp(-lambda_)/(expm1(-lambda_))**2
g1 = 2*cosh(lambda_/2.0)
g2 = 4+2*cosh(lambda_)
return mu, var, g1, g2
def _entropy(self, lambda_):
l = lambda_
C = -expm1(-l)
return l * exp(-l) / C - log(C)
planck = planck_gen(name='planck', longname='A discrete exponential ')
class boltzmann_gen(rv_discrete):
"""A Boltzmann (Truncated Discrete Exponential) random variable.
%(before_notes)s
Notes
-----
The probability mass function for `boltzmann` is::
boltzmann.pmf(k) = (1-exp(-lambda_)*exp(-lambda_*k)/(1-exp(-lambda_*N))
for ``k = 0,..., N-1``.
`boltzmann` takes ``lambda_`` and ``N`` as shape parameters.
%(example)s
"""
def _pmf(self, k, lambda_, N):
fact = (expm1(-lambda_))/(expm1(-lambda_*N))
return fact*exp(-lambda_*k)
def _cdf(self, x, lambda_, N):
k = floor(x)
return (expm1(-lambda_*(k+1)))/(expm1(-lambda_*N))
def _ppf(self, q, lambda_, N):
qnew = -q*(expm1(-lambda_*N))
vals = ceil(-1.0/lambda_ * log1p(-qnew)-1)
vals1 = (vals-1).clip(0.0, np.inf)
temp = self._cdf(vals1, lambda_, N)
return np.where(temp >= q, vals1, vals)
def _stats(self, lambda_, N):
z = exp(-lambda_)
zN = exp(-lambda_*N)
mu = z/(1.0-z)-N*zN/(1-zN)
var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2
trm = (1-zN)/(1-z)
trm2 = (z*trm**2 - N*N*zN)
g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN)
g1 = g1 / trm2**(1.5)
g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN)
g2 = g2 / trm2 / trm2
return mu, var, g1, g2
boltzmann = boltzmann_gen(name='boltzmann',
longname='A truncated discrete exponential ')
class randint_gen(rv_discrete):
"""A uniform discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `randint` is::
randint.pmf(k) = 1./(high - low)
for ``k = low, ..., high - 1``.
`randint` takes ``low`` and ``high`` as shape parameters.
Note the difference to the numpy ``random_integers`` which
returns integers on a *closed* interval ``[low, high]``.
%(example)s
"""
def _argcheck(self, low, high):
self.a = low
self.b = high - 1
return (high > low)
def _pmf(self, k, low, high):
p = np.ones_like(k) / (high - low)
return np.where((k >= low) & (k < high), p, 0.)
def _cdf(self, x, low, high):
k = floor(x)
return (k - low + 1.) / (high - low)
def _ppf(self, q, low, high):
vals = ceil(q * (high - low) + low) - 1
vals1 = (vals - 1).clip(low, high)
temp = self._cdf(vals1, low, high)
return np.where(temp >= q, vals1, vals)
def _stats(self, low, high):
m2, m1 = np.asarray(high), np.asarray(low)
mu = (m2 + m1 - 1.0) / 2
d = m2 - m1
var = (d*d - 1) / 12.0
g1 = 0.0
g2 = -6.0/5.0 * (d*d + 1.0) / (d*d - 1.0)
return mu, var, g1, g2
def _rvs(self, low, high=None):
"""An array of *size* random integers >= ``low`` and < ``high``.
If ``high`` is ``None``, then range is >=0 and < low
"""
return mtrand.randint(low, high, self._size)
def _entropy(self, low, high):
return log(high - low)
randint = randint_gen(name='randint', longname='A discrete uniform '
'(random integer)')
# FIXME: problems sampling.
class zipf_gen(rv_discrete):
"""A Zipf discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `zipf` is::
zipf.pmf(k, a) = 1/(zeta(a) * k**a)
for ``k >= 1``.
`zipf` takes ``a`` as shape parameter.
%(example)s
"""
def _rvs(self, a):
return mtrand.zipf(a, size=self._size)
def _argcheck(self, a):
return a > 1
def _pmf(self, k, a):
Pk = 1.0 / special.zeta(a, 1) / k**a
return Pk
def _munp(self, n, a):
return _lazywhere(
a > n + 1, (a, n),
lambda a, n: special.zeta(a - n, 1) / special.zeta(a, 1),
np.inf)
zipf = zipf_gen(a=1, name='zipf', longname='A Zipf')
class dlaplace_gen(rv_discrete):
"""A Laplacian discrete random variable.
%(before_notes)s
Notes
-----
The probability mass function for `dlaplace` is::
dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k))
for ``a > 0``.
`dlaplace` takes ``a`` as shape parameter.
%(example)s
"""
def _pmf(self, k, a):
return tanh(a/2.0) * exp(-a * abs(k))
def _cdf(self, x, a):
k = floor(x)
f = lambda k, a: 1.0 - exp(-a * k) / (exp(a) + 1)
f2 = lambda k, a: exp(a * (k+1)) / (exp(a) + 1)
return _lazywhere(k >= 0, (k, a), f=f, f2=f2)
def _ppf(self, q, a):
const = 1 + exp(a)
vals = ceil(np.where(q < 1.0 / (1 + exp(-a)), log(q*const) / a - 1,
-log((1-q) * const) / a))
vals1 = vals - 1
return np.where(self._cdf(vals1, a) >= q, vals1, vals)
def _stats(self, a):
ea = exp(a)
mu2 = 2.*ea/(ea-1.)**2
mu4 = 2.*ea*(ea**2+10.*ea+1.) / (ea-1.)**4
return 0., mu2, 0., mu4/mu2**2 - 3.
def _entropy(self, a):
return a / sinh(a) - log(tanh(a/2.0))
dlaplace = dlaplace_gen(a=-np.inf,
name='dlaplace', longname='A discrete Laplacian')
class skellam_gen(rv_discrete):
"""A Skellam discrete random variable.
%(before_notes)s
Notes
-----
Probability distribution of the difference of two correlated or
uncorrelated Poisson random variables.
Let k1 and k2 be two Poisson-distributed r.v. with expected values
lam1 and lam2. Then, ``k1 - k2`` follows a Skellam distribution with
parameters ``mu1 = lam1 - rho*sqrt(lam1*lam2)`` and
``mu2 = lam2 - rho*sqrt(lam1*lam2)``, where rho is the correlation
coefficient between k1 and k2. If the two Poisson-distributed r.v.
are independent then ``rho = 0``.
Parameters mu1 and mu2 must be strictly positive.
For details see: http://en.wikipedia.org/wiki/Skellam_distribution
`skellam` takes ``mu1`` and ``mu2`` as shape parameters.
%(example)s
"""
def _rvs(self, mu1, mu2):
n = self._size
return mtrand.poisson(mu1, n) - mtrand.poisson(mu2, n)
def _pmf(self, x, mu1, mu2):
px = np.where(x < 0,
_ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2,
_ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2)
# ncx2.pdf() returns nan's for extremely low probabilities
return px
def _cdf(self, x, mu1, mu2):
x = floor(x)
px = np.where(x < 0,
_ncx2_cdf(2*mu2, -2*x, 2*mu1),
1-_ncx2_cdf(2*mu1, 2*(x+1), 2*mu2))
return px
def _stats(self, mu1, mu2):
mean = mu1 - mu2
var = mu1 + mu2
g1 = mean / sqrt((var)**3)
g2 = 1 / var
return mean, var, g1, g2
skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam')

File diff suppressed because it is too large Load Diff

@ -0,0 +1,493 @@
#
# Author: Joris Vankerschaver 2013
#
from __future__ import division, print_function, absolute_import
from scipy.misc import doccer
from functools import wraps
import numpy as np
import scipy.linalg
__all__ = ['multivariate_normal']
_LOG_2PI = np.log(2 * np.pi)
def _process_parameters(dim, mean, cov):
"""
Infer dimensionality from mean or covariance matrix, ensure that
mean and covariance are full vector resp. matrix.
"""
# Try to infer dimensionality
if dim is None:
if mean is None:
if cov is None:
dim = 1
else:
cov = np.asarray(cov, dtype=float)
if cov.ndim < 2:
dim = 1
else:
dim = cov.shape[0]
else:
mean = np.asarray(mean, dtype=float)
dim = mean.size
else:
if not np.isscalar(dim):
raise ValueError("Dimension of random variable must be a scalar.")
# Check input sizes and return full arrays for mean and cov if necessary
if mean is None:
mean = np.zeros(dim)
mean = np.asarray(mean, dtype=float)
if cov is None:
cov = 1.0
cov = np.asarray(cov, dtype=float)
if dim == 1:
mean.shape = (1,)
cov.shape = (1, 1)
if mean.ndim != 1 or mean.shape[0] != dim:
raise ValueError("Array 'mean' must be vector of length %d." % dim)
if cov.ndim == 0:
cov = cov * np.eye(dim)
elif cov.ndim == 1:
cov = np.diag(cov)
else:
if cov.shape != (dim, dim):
raise ValueError("Array 'cov' must be at most two-dimensional,"
" but cov.ndim = %d" % cov.ndim)
return dim, mean, cov
def _process_quantiles(x, dim):
"""
Adjust quantiles array so that last axis labels the components of
each data point.
"""
x = np.asarray(x, dtype=float)
if x.ndim == 0:
x = x[np.newaxis]
elif x.ndim == 1:
if dim == 1:
x = x[:, np.newaxis]
else:
x = x[np.newaxis, :]
return x
def _squeeze_output(out):
"""
Remove single-dimensional entries from array and convert to scalar,
if necessary.
"""
out = out.squeeze()
if out.ndim == 0:
out = out[()]
return out
def _pinv_1d(v, eps=1e-5):
"""
A helper function for computing the pseudoinverse.
Parameters
----------
v : iterable of numbers
This may be thought of as a vector of eigenvalues or singular values.
eps : float
Elements of v smaller than eps are considered negligible.
Returns
-------
v_pinv : 1d float ndarray
A vector of pseudo-inverted numbers.
"""
return np.array([0 if abs(x) < eps else 1/x for x in v], dtype=float)
def _psd_pinv_decomposed_log_pdet(mat, cond=None, rcond=None,
lower=True, check_finite=True):
"""
Compute a decomposition of the pseudo-inverse and the logarithm of
the pseudo-determinant of a symmetric positive semi-definite
matrix.
The pseudo-determinant of a matrix is defined as the product of
the non-zero eigenvalues, and coincides with the usual determinant
for a full matrix.
Parameters
----------
mat : array_like
Input array of shape (`m`, `n`)
cond, rcond : float or None
Cutoff for 'small' singular values.
Eigenvalues smaller than ``rcond*largest_eigenvalue``
are considered zero.
If None or -1, suitable machine precision is used.
lower : bool, optional
Whether the pertinent array data is taken from the lower or upper
triangle of `mat`. (Default: lower)
check_finite : boolean, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
M : array_like
The pseudo-inverse of the input matrix is np.dot(M, M.T).
log_pdet : float
Logarithm of the pseudo-determinant of the matrix.
"""
# Compute the symmetric eigendecomposition.
# The input covariance matrix is required to be real symmetric
# and positive semidefinite which implies that its eigenvalues
# are all real and non-negative,
# but clip them anyway to avoid numerical issues.
# TODO: the code to set cond/rcond is identical to that in
# scipy.linalg.{pinvh, pinv2} and if/when this function is subsumed
# into scipy.linalg it should probably be shared between all of
# these routines.
# Note that eigh takes care of array conversion, chkfinite,
# and assertion that the matrix is square.
s, u = scipy.linalg.eigh(mat, lower=lower, check_finite=check_finite)
if rcond is not None:
cond = rcond
if cond in [None, -1]:
t = u.dtype.char.lower()
factor = {'f': 1E3, 'd': 1E6}
cond = factor[t] * np.finfo(t).eps
eps = cond * np.max(abs(s))
if np.min(s) < -eps:
raise ValueError('the covariance matrix must be positive semidefinite')
s_pinv = _pinv_1d(s, eps)
U = np.multiply(u, np.sqrt(s_pinv))
log_pdet = np.sum(np.log(s[s > eps]))
return U, log_pdet
_doc_default_callparams = \
"""mean : array_like, optional
Mean of the distribution (default zero)
cov : array_like, optional
Covariance matrix of the distribution (default one)
"""
_doc_callparams_note = \
"""Setting the parameter `mean` to `None` is equivalent to having `mean`
be the zero-vector. The parameter `cov` can be a scalar, in which case
the covariance matrix is the identity times that value, a vector of
diagonal entries for the covariance matrix, or a two-dimensional
array_like.
"""
_doc_frozen_callparams = ""
_doc_frozen_callparams_note = \
"""See class definition for a detailed description of parameters."""
docdict_params = {
'_doc_default_callparams': _doc_default_callparams,
'_doc_callparams_note': _doc_callparams_note
}
docdict_noparams = {
'_doc_default_callparams': _doc_frozen_callparams,
'_doc_callparams_note': _doc_frozen_callparams_note
}
class multivariate_normal_gen(object):
r"""
A multivariate normal random variable.
The `mean` keyword specifies the mean. The `cov` keyword specifies the
covariance matrix.
.. versionadded:: 0.14.0
Methods
-------
pdf(x, mean=None, cov=1)
Probability density function.
logpdf(x, mean=None, cov=1)
Log of the probability density function.
rvs(mean=None, cov=1)
Draw random samples from a multivariate normal distribution.
entropy()
Compute the differential entropy of the multivariate normal.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
Alternatively, the object may be called (as a function) to fix the mean
and covariance parameters, returning a "frozen" multivariate normal
random variable:
rv = multivariate_normal(mean=None, scale=1)
- Frozen object with the same methods but holding the given
mean and covariance fixed.
Notes
-----
%(_doc_callparams_note)s
The covariance matrix `cov` must be a (symmetric) positive
semi-definite matrix. The determinant and inverse of `cov` are computed
as the pseudo-determinant and pseudo-inverse, respectively, so
that `cov` does not need to have full rank.
The probability density function for `multivariate_normal` is
.. math::
f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),
where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix,
and :math:`k` is the dimension of the space where :math:`x` takes values.
Examples
--------
>>> from scipy.stats import multivariate_normal
>>> x = np.linspace(0, 5, 10, endpoint=False)
>>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,
0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349])
>>> plt.plot(x, y)
The input quantiles can be any shape of array, as long as the last
axis labels the components. This allows us for instance to
display the frozen pdf for a non-isotropic random variable in 2D as
follows:
>>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
>>> pos = np.empty(x.shape + (2,))
>>> pos[:, :, 0] = x; pos[:, :, 1] = y
>>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
>>> plt.contourf(x, y, rv.pdf(pos))
"""
def __init__(self):
self.__doc__ = doccer.docformat(self.__doc__, docdict_params)
def __call__(self, mean=None, cov=1):
"""
Create a frozen multivariate normal distribution.
See `multivariate_normal_frozen` for more information.
"""
return multivariate_normal_frozen(mean, cov)
def _logpdf(self, x, mean, prec_U, log_det_cov):
"""
Parameters
----------
x : ndarray
Points at which to evaluate the log of the probability
density function
mean : ndarray
Mean of the distribution
prec_U : ndarray
A decomposition such that np.dot(prec_U, prec_U.T)
is the precision matrix, i.e. inverse of the covariance matrix.
log_det_cov : float
Logarithm of the determinant of the covariance matrix
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'logpdf' instead.
"""
dim = x.shape[-1]
dev = x - mean
maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1)
return -0.5 * (dim * _LOG_2PI + log_det_cov + maha)
def logpdf(self, x, mean, cov):
"""
Log of the multivariate normal probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
Notes
-----
%(_doc_callparams_note)s
Returns
-------
pdf : ndarray
Log of the probability density function evaluated at `x`
"""
dim, mean, cov = _process_parameters(None, mean, cov)
x = _process_quantiles(x, dim)
prec_U, log_det_cov = _psd_pinv_decomposed_log_pdet(cov)
out = self._logpdf(x, mean, prec_U, log_det_cov)
return _squeeze_output(out)
def pdf(self, x, mean, cov):
"""
Multivariate normal probability density function.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
%(_doc_default_callparams)s
Notes
-----
%(_doc_callparams_note)s
Returns
-------
pdf : ndarray
Probability density function evaluated at `x`
"""
dim, mean, cov = _process_parameters(None, mean, cov)
x = _process_quantiles(x, dim)
prec_U, log_det_cov = _psd_pinv_decomposed_log_pdet(cov)
out = np.exp(self._logpdf(x, mean, prec_U, log_det_cov))
return _squeeze_output(out)
def rvs(self, mean=None, cov=1, size=1):
"""
Draw random samples from a multivariate normal distribution.
Parameters
----------
%(_doc_default_callparams)s
size : integer, optional
Number of samples to draw (default 1).
Notes
-----
%(_doc_callparams_note)s
Returns
-------
rvs : ndarray or scalar
Random variates of size (`size`, `N`), where `N` is the
dimension of the random variable.
"""
dim, mean, cov = _process_parameters(None, mean, cov)
out = np.random.multivariate_normal(mean, cov, size)
return _squeeze_output(out)
def entropy(self, mean=None, cov=1):
"""
Compute the differential entropy of the multivariate normal.
Parameters
----------
%(_doc_default_callparams)s
Notes
-----
%(_doc_callparams_note)s
Returns
-------
h : scalar
Entropy of the multivariate normal distribution
"""
dim, mean, cov = _process_parameters(None, mean, cov)
return 1/2 * np.log(np.linalg.det(2 * np.pi * np.e * cov))
multivariate_normal = multivariate_normal_gen()
class multivariate_normal_frozen(object):
def __init__(self, mean=None, cov=1):
"""
Create a frozen multivariate normal distribution.
Parameters
----------
mean : array_like, optional
Mean of the distribution (default zero)
cov : array_like, optional
Covariance matrix of the distribution (default one)
Examples
--------
When called with the default parameters, this will create a 1D random
variable with mean 0 and covariance 1:
>>> from scipy.stats import multivariate_normal
>>> r = multivariate_normal()
>>> r.mean
array([ 0.])
>>> r.cov
array([[1.]])
"""
self.dim, self.mean, self.cov = _process_parameters(None, mean, cov)
self.prec_U, self._log_det_cov = _psd_pinv_decomposed_log_pdet(self.cov)
self._mnorm = multivariate_normal_gen()
def logpdf(self, x):
x = _process_quantiles(x, self.dim)
out = self._mnorm._logpdf(x, self.mean, self.prec_U, self._log_det_cov)
return _squeeze_output(out)
def pdf(self, x):
return np.exp(self.logpdf(x))
def rvs(self, size=1):
return self._mnorm.rvs(self.mean, self.cov, size)
def entropy(self):
"""
Computes the differential entropy of the multivariate normal.
Returns
-------
h : scalar
Entropy of the multivariate normal distribution
"""
return 1/2 * (self.dim * (_LOG_2PI + 1) + self._log_det_cov)
# Set frozen generator docstrings from corresponding docstrings in
# multivariate_normal_gen and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'rvs']:
method = multivariate_normal_gen.__dict__[name]
method_frozen = multivariate_normal_frozen.__dict__[name]
method_frozen.__doc__ = doccer.docformat(method.__doc__, docdict_noparams)
method.__doc__ = doccer.docformat(method.__doc__, docdict_params)

@ -0,0 +1,201 @@
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy import poly1d
from scipy.special import beta
# The following code was used to generate the Pade coefficients for the
# Tukey Lambda variance function. Version 0.17 of mpmath was used.
#---------------------------------------------------------------------------
# import mpmath as mp
#
# mp.mp.dps = 60
#
# one = mp.mpf(1)
# two = mp.mpf(2)
#
# def mpvar(lam):
# if lam == 0:
# v = mp.pi**2 / three
# else:
# v = (two / lam**2) * (one / (one + two*lam) -
# mp.beta(lam + one, lam + one))
# return v
#
# t = mp.taylor(mpvar, 0, 8)
# p, q = mp.pade(t, 4, 4)
# print "p =", [mp.fp.mpf(c) for c in p]
# print "q =", [mp.fp.mpf(c) for c in q]
#---------------------------------------------------------------------------
# Pade coefficients for the Tukey Lambda variance function.
_tukeylambda_var_pc = [3.289868133696453, 0.7306125098871127,
-0.5370742306855439, 0.17292046290190008,
-0.02371146284628187]
_tukeylambda_var_qc = [1.0, 3.683605511659861, 4.184152498888124,
1.7660926747377275, 0.2643989311168465]
# numpy.poly1d instances for the numerator and denominator of the
# Pade approximation to the Tukey Lambda variance.
_tukeylambda_var_p = poly1d(_tukeylambda_var_pc[::-1])
_tukeylambda_var_q = poly1d(_tukeylambda_var_qc[::-1])
def tukeylambda_variance(lam):
"""Variance of the Tukey Lambda distribution.
Parameters
----------
lam : array_like
The lambda values at which to compute the variance.
Returns
-------
v : ndarray
The variance. For lam < -0.5, the variance is not defined, so
np.nan is returned. For lam = 0.5, np.inf is returned.
Notes
-----
In an interval around lambda=0, this function uses the [4,4] Pade
approximation to compute the variance. Otherwise it uses the standard
formula (http://en.wikipedia.org/wiki/Tukey_lambda_distribution). The
Pade approximation is used because the standard formula has a removable
discontinuity at lambda = 0, and does not produce accurate numerical
results near lambda = 0.
"""
lam = np.asarray(lam)
shp = lam.shape
lam = np.atleast_1d(lam).astype(np.float64)
# For absolute values of lam less than threshold, use the Pade
# approximation.
threshold = 0.075
# Play games with masks to implement the conditional evaluation of
# the distribution.
# lambda < -0.5: var = nan
low_mask = lam < -0.5
# lambda == -0.5: var = inf
neghalf_mask = lam == -0.5
# abs(lambda) < threshold: use Pade approximation
small_mask = np.abs(lam) < threshold
# else the "regular" case: use the explicit formula.
reg_mask = ~(low_mask | neghalf_mask | small_mask)
# Get the 'lam' values for the cases where they are needed.
small = lam[small_mask]
reg = lam[reg_mask]
# Compute the function for each case.
v = np.empty_like(lam)
v[low_mask] = np.nan
v[neghalf_mask] = np.inf
if small.size > 0:
# Use the Pade approximation near lambda = 0.
v[small_mask] = _tukeylambda_var_p(small) / _tukeylambda_var_q(small)
if reg.size > 0:
v[reg_mask] = (2.0 / reg**2) * (1.0 / (1.0 + 2 * reg) -
beta(reg + 1, reg + 1))
v.shape = shp
return v
# The following code was used to generate the Pade coefficients for the
# Tukey Lambda kurtosis function. Version 0.17 of mpmath was used.
#---------------------------------------------------------------------------
# import mpmath as mp
#
# mp.mp.dps = 60
#
# one = mp.mpf(1)
# two = mp.mpf(2)
# three = mp.mpf(3)
# four = mp.mpf(4)
#
# def mpkurt(lam):
# if lam == 0:
# k = mp.mpf(6)/5
# else:
# numer = (one/(four*lam+one) - four*mp.beta(three*lam+one, lam+one) +
# three*mp.beta(two*lam+one, two*lam+one))
# denom = two*(one/(two*lam+one) - mp.beta(lam+one,lam+one))**2
# k = numer / denom - three
# return k
#
# # There is a bug in mpmath 0.17: when we use the 'method' keyword of the
# # taylor function and we request a degree 9 Taylor polynomial, we actually
# # get degree 8.
# t = mp.taylor(mpkurt, 0, 9, method='quad', radius=0.01)
# t = [mp.chop(c, tol=1e-15) for c in t]
# p, q = mp.pade(t, 4, 4)
# print "p =", [mp.fp.mpf(c) for c in p]
# print "q =", [mp.fp.mpf(c) for c in q]
#---------------------------------------------------------------------------
# Pade coefficients for the Tukey Lambda kurtosis function.
_tukeylambda_kurt_pc = [1.2, -5.853465139719495, -22.653447381131077,
0.20601184383406815, 4.59796302262789]
_tukeylambda_kurt_qc = [1.0, 7.171149192233599, 12.96663094361842,
0.43075235247853005, -2.789746758009912]
# numpy.poly1d instances for the numerator and denominator of the
# Pade approximation to the Tukey Lambda kurtosis.
_tukeylambda_kurt_p = poly1d(_tukeylambda_kurt_pc[::-1])
_tukeylambda_kurt_q = poly1d(_tukeylambda_kurt_qc[::-1])
def tukeylambda_kurtosis(lam):
"""Kurtosis of the Tukey Lambda distribution.
Parameters
----------
lam : array_like
The lambda values at which to compute the variance.
Returns
-------
v : ndarray
The variance. For lam < -0.25, the variance is not defined, so
np.nan is returned. For lam = 0.25, np.inf is returned.
"""
lam = np.asarray(lam)
shp = lam.shape
lam = np.atleast_1d(lam).astype(np.float64)
# For absolute values of lam less than threshold, use the Pade
# approximation.
threshold = 0.055
# Use masks to implement the conditional evaluation of the kurtosis.
# lambda < -0.25: kurtosis = nan
low_mask = lam < -0.25
# lambda == -0.25: kurtosis = inf
negqrtr_mask = lam == -0.25
# lambda near 0: use Pade approximation
small_mask = np.abs(lam) < threshold
# else the "regular" case: use the explicit formula.
reg_mask = ~(low_mask | negqrtr_mask | small_mask)
# Get the 'lam' values for the cases where they are needed.
small = lam[small_mask]
reg = lam[reg_mask]
# Compute the function for each case.
k = np.empty_like(lam)
k[low_mask] = np.nan
k[negqrtr_mask] = np.inf
if small.size > 0:
k[small_mask] = _tukeylambda_kurt_p(small) / _tukeylambda_kurt_q(small)
if reg.size > 0:
numer = (1.0 / (4 * reg + 1) - 4 * beta(3 * reg + 1, reg + 1) +
3 * beta(2 * reg + 1, 2 * reg + 1))
denom = 2 * (1.0/(2 * reg + 1) - beta(reg + 1, reg + 1))**2
k[reg_mask] = numer / denom - 3
# The return value will be a numpy array; resetting the shape ensures that
# if `lam` was a scalar, the return value is a 0-d array.
k.shape = shp
return k

@ -0,0 +1,271 @@
"""Some functions for working with contingency tables (i.e. cross tabulations).
"""
from __future__ import division, print_function, absolute_import
from functools import reduce
import numpy as np
from .stats import power_divergence
__all__ = ['margins', 'expected_freq', 'chi2_contingency']
def margins(a):
"""Return a list of the marginal sums of the array `a`.
Parameters
----------
a : ndarray
The array for which to compute the marginal sums.
Returns
-------
margsums : list of ndarrays
A list of length `a.ndim`. `margsums[k]` is the result
of summing `a` over all axes except `k`; it has the same
number of dimensions as `a`, but the length of each axis
except axis `k` will be 1.
Examples
--------
>>> a = np.arange(12).reshape(2, 6)
>>> a
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11]])
>>> m0, m1 = margins(a)
>>> m0
array([[15],
[51]])
>>> m1
array([[ 6, 8, 10, 12, 14, 16]])
>>> b = np.arange(24).reshape(2,3,4)
>>> m0, m1, m2 = margins(b)
>>> m0
array([[[ 66]],
[[210]]])
>>> m1
array([[[ 60],
[ 92],
[124]]])
>>> m2
array([[[60, 66, 72, 78]]])
"""
margsums = []
ranged = list(range(a.ndim))
for k in ranged:
marg = np.apply_over_axes(np.sum, a, [j for j in ranged if j != k])
margsums.append(marg)
return margsums
def expected_freq(observed):
"""
Compute the expected frequencies from a contingency table.
Given an n-dimensional contingency table of observed frequencies,
compute the expected frequencies for the table based on the marginal
sums under the assumption that the groups associated with each
dimension are independent.
Parameters
----------
observed : array_like
The table of observed frequencies. (While this function can handle
a 1-D array, that case is trivial. Generally `observed` is at
least 2-D.)
Returns
-------
expected : ndarray of float64
The expected frequencies, based on the marginal sums of the table.
Same shape as `observed`.
Examples
--------
>>> observed = np.array([[10, 10, 20],[20, 20, 20]])
>>> expected_freq(observed)
array([[ 12., 12., 16.],
[ 18., 18., 24.]])
"""
# Typically `observed` is an integer array. If `observed` has a large
# number of dimensions or holds large values, some of the following
# computations may overflow, so we first switch to floating point.
observed = np.asarray(observed, dtype=np.float64)
# Create a list of the marginal sums.
margsums = margins(observed)
# Create the array of expected frequencies. The shapes of the
# marginal sums returned by apply_over_axes() are just what we
# need for broadcasting in the following product.
d = observed.ndim
expected = reduce(np.multiply, margsums) / observed.sum() ** (d - 1)
return expected
def chi2_contingency(observed, correction=True, lambda_=None):
"""Chi-square test of independence of variables in a contingency table.
This function computes the chi-square statistic and p-value for the
hypothesis test of independence of the observed frequencies in the
contingency table [1]_ `observed`. The expected frequencies are computed
based on the marginal sums under the assumption of independence; see
`scipy.stats.contingency.expected_freq`. The number of degrees of
freedom is (expressed using numpy functions and attributes)::
dof = observed.size - sum(observed.shape) + observed.ndim - 1
Parameters
----------
observed : array_like
The contingency table. The table contains the observed frequencies
(i.e. number of occurrences) in each category. In the two-dimensional
case, the table is often described as an "R x C table".
correction : bool, optional
If True, *and* the degrees of freedom is 1, apply Yates' correction
for continuity. The effect of the correction is to adjust each
observed value by 0.5 towards the corresponding expected value.
lambda_ : float or str, optional.
By default, the statistic computed in this test is Pearson's
chi-squared statistic [2]_. `lambda_` allows a statistic from the
Cressie-Read power divergence family [3]_ to be used instead. See
`power_divergence` for details.
Returns
-------
chi2 : float
The test statistic.
p : float
The p-value of the test
dof : int
Degrees of freedom
expected : ndarray, same shape as `observed`
The expected frequencies, based on the marginal sums of the table.
See Also
--------
contingency.expected_freq
fisher_exact
chisquare
power_divergence
Notes
-----
An often quoted guideline for the validity of this calculation is that
the test should be used only if the observed and expected frequency in
each cell is at least 5.
This is a test for the independence of different categories of a
population. The test is only meaningful when the dimension of
`observed` is two or more. Applying the test to a one-dimensional
table will always result in `expected` equal to `observed` and a
chi-square statistic equal to 0.
This function does not handle masked arrays, because the calculation
does not make sense with missing values.
Like stats.chisquare, this function computes a chi-square statistic;
the convenience this function provides is to figure out the expected
frequencies and degrees of freedom from the given contingency table.
If these were already known, and if the Yates' correction was not
required, one could use stats.chisquare. That is, if one calls::
chi2, p, dof, ex = chi2_contingency(obs, correction=False)
then the following is true::
(chi2, p) == stats.chisquare(obs.ravel(), f_exp=ex.ravel(),
ddof=obs.size - 1 - dof)
The `lambda_` argument was added in version 0.13.0 of scipy.
References
----------
.. [1] "Contingency table", http://en.wikipedia.org/wiki/Contingency_table
.. [2] "Pearson's chi-squared test",
http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
.. [3] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
pp. 440-464.
Examples
--------
A two-way example (2 x 3):
>>> obs = np.array([[10, 10, 20], [20, 20, 20]])
>>> chi2_contingency(obs)
(2.7777777777777777,
0.24935220877729619,
2,
array([[ 12., 12., 16.],
[ 18., 18., 24.]]))
Perform the test using the log-likelihood ratio (i.e. the "G-test")
instead of Pearson's chi-squared statistic.
>>> g, p, dof, expctd = chi2_contingency(obs, lambda_="log-likelihood")
>>> g, p
(2.7688587616781319, 0.25046668010954165)
A four-way example (2 x 2 x 2 x 2):
>>> obs = np.array(
... [[[[12, 17],
... [11, 16]],
... [[11, 12],
... [15, 16]]],
... [[[23, 15],
... [30, 22]],
... [[14, 17],
... [15, 16]]]])
>>> chi2_contingency(obs)
(8.7584514426741897,
0.64417725029295503,
11,
array([[[[ 14.15462386, 14.15462386],
[ 16.49423111, 16.49423111]],
[[ 11.2461395 , 11.2461395 ],
[ 13.10500554, 13.10500554]]],
[[[ 19.5591166 , 19.5591166 ],
[ 22.79202844, 22.79202844]],
[[ 15.54012004, 15.54012004],
[ 18.10873492, 18.10873492]]]]))
"""
observed = np.asarray(observed)
if np.any(observed < 0):
raise ValueError("All values in `observed` must be nonnegative.")
if observed.size == 0:
raise ValueError("No data; `observed` has size 0.")
expected = expected_freq(observed)
if np.any(expected == 0):
# Include one of the positions where expected is zero in
# the exception message.
zeropos = list(np.where(expected == 0)[0])
raise ValueError("The internally computed table of expected "
"frequencies has a zero element at %s." % zeropos)
# The degrees of freedom
dof = expected.size - sum(expected.shape) + expected.ndim - 1
if dof == 0:
# Degenerate case; this occurs when `observed` is 1D (or, more
# generally, when it has only one nontrivial dimension). In this
# case, we also have observed == expected, so chi2 is 0.
chi2 = 0.0
p = 1.0
else:
if dof == 1 and correction:
# Adjust `observed` according to Yates' correction for continuity.
observed = observed + 0.5 * np.sign(expected - observed)
chi2, p = power_divergence(observed, expected,
ddof=observed.size - 1 - dof, axis=None,
lambda_=lambda_)
return chi2, p, dof, expected

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -1,7 +1,8 @@
'''
Contains FitDistribution and Profile class, which are
important classes for fitting to various Continous and Discrete Probability Distributions
important classes for fitting to various Continous and Discrete Probability
Distributions
Author: Per A. Brodtkorb 2008
'''
@ -12,7 +13,7 @@ from wafo.plotbackend import plotbackend
from wafo.misc import ecross, findcross
import numdifftools #@UnresolvedImport
import numdifftools # @UnresolvedImport
from scipy import special
from scipy.linalg import pinv2
from scipy import optimize
@ -20,32 +21,37 @@ from scipy import optimize
import numpy
import numpy as np
from numpy import alltrue, arange, ravel, sum, zeros, log, sqrt, exp
from numpy import (atleast_1d, any, asarray, nan, pi, #reshape, #repeat, product, ndarray,
isfinite)
from numpy import (
atleast_1d, any, asarray, nan, pi, # reshape, #repeat, product, ndarray,
isfinite)
from numpy import flatnonzero as nonzero
__all__ = [
'Profile', 'FitDistribution'
]
'Profile', 'FitDistribution'
]
floatinfo = np.finfo(float)
#arr = atleast_1d
# arr = atleast_1d
arr = asarray
all = alltrue #@ReservedAssignment
all = alltrue # @ReservedAssignment
def chi2isf(p, df):
return special.chdtri(df, p)
def chi2sf(x, df):
return special.chdtrc(df, x)
def norm_ppf(q):
return special.ndtri(q)
# Frozen RV class
class rv_frozen(object):
''' Frozen continous or discrete 1D Random Variable object (RV)
Methods
@ -67,61 +73,75 @@ class rv_frozen(object):
entropy()
(Differential) entropy of the RV.
'''
def __init__(self, dist, *args, **kwds):
self.dist = dist
loc0, scale0 = map(kwds.get, ['loc', 'scale'])
if hasattr(dist, 'fix_loc_scale'): #isinstance(dist, rv_continuous):
args, loc0, scale0 = dist.fix_loc_scale(args, loc0, scale0)
self.par = args + (loc0, scale0)
else: # rv_discrete
args, loc0 = dist.fix_loc(args, loc0)
self.par = args + (loc0,)
args, loc, scale = dist._parse_args(*args, **kwds)
if len(args) == dist.numargs - 2: # isinstance(dist, rv_continuous):
self.par = args + (loc, scale)
else: # rv_discrete
self.par = args + (loc,)
def pdf(self, x):
''' Probability density function at x of the given RV.'''
return self.dist.pdf(x, *self.par)
def cdf(self, x):
'''Cumulative distribution function at x of the given RV.'''
return self.dist.cdf(x, *self.par)
def ppf(self, q):
'''Percent point function (inverse of cdf) at q of the given RV.'''
return self.dist.ppf(q, *self.par)
def isf(self, q):
'''Inverse survival function at q of the given RV.'''
return self.dist.isf(q, *self.par)
def rvs(self, size=None):
'''Random variates of given type.'''
kwds = dict(size=size)
return self.dist.rvs(*self.par, **kwds)
def sf(self, x):
'''Survival function (1-cdf) at x of the given RV.'''
return self.dist.sf(x, *self.par)
def stats(self, moments='mv'):
''' Some statistics of the given RV'''
kwds = dict(moments=moments)
return self.dist.stats(*self.par, **kwds)
def median(self):
return self.dist.median(*self.par)
def mean(self):
return self.dist.mean(*self.par)
def var(self):
return self.dist.var(*self.par)
def std(self):
return self.dist.std(*self.par)
def moment(self, n):
par1 = self.par[:self.dist.numargs]
return self.dist.moment(n, *par1)
def entropy(self):
return self.dist.entropy(*self.par)
def pmf(self, k):
'''Probability mass function at k of the given RV'''
return self.dist.pmf(k, *self.par)
def interval(self,alpha):
def interval(self, alpha):
return self.dist.interval(alpha, *self.par)
# internal class to profile parameters of a given distribution
class Profile(object):
''' Profile Log- likelihood or Product Spacing-function.
which can be used for constructing confidence interval for
either phat[i], probability or quantile.
@ -133,24 +153,25 @@ class Profile(object):
**kwds : named arguments with keys
i : scalar integer
defining which distribution parameter to profile, i.e. which
parameter to keep fixed (default index to first non-fixed parameter)
parameter to keep fixed (default first non-fixed parameter)
pmin, pmax : real scalars
Interval for either the parameter, phat(i), prb, or x, used in the
optimization of the profile function (default is based on the
100*(1-alpha)% confidence interval computed using the delta method.)
100*(1-alpha)% confidence interval computed with the delta method.)
N : scalar integer
Max number of points used in Lp (default 100)
x : real scalar
Quantile (return value) (default None)
logSF : real scalar
log survival probability,i.e., SF = Prob(X>x;phat) (default None)
link : function connecting the quantile (x) and the survival probability
link : function connecting the x-quantile and the survival probability
(SF) with the fixed distribution parameter, i.e.:
self.par[i] = link(x,logSF,self.par,i), where logSF = log(Prob(X>x;phat)).
self.par[i] = link(x,logSF,self.par,i), where
logSF = log(Prob(X>x;phat)).
This means that if:
1) x is not None then x is profiled
2) logSF is not None then logSF is profiled
3) x and logSF both are None then self.par[i] is profiled (default)
3) x and logSF are None then self.par[i] is profiled (default)
alpha : real scalar
confidence coefficent (default 0.05)
Returns
@ -218,9 +239,12 @@ class Profile(object):
self.title = 'Profile log'
self.xlabel = ''
self.ylabel = ''
self.i_fixed, self.N, self.alpha, self.pmin, self.pmax, self.x, self.logSF, self.link = map(kwds.get,
['i', 'N', 'alpha', 'pmin', 'pmax', 'x', 'logSF', 'link'],
[i0, 100, 0.05, None, None, None, None, None])
(self.i_fixed, self.N, self.alpha, self.pmin, self.pmax, self.x,
self.logSF, self.link) = map(
kwds.get,
['i', 'N', 'alpha', 'pmin',
'pmax', 'x', 'logSF', 'link'],
[i0, 100, 0.05, None, None, None, None, None])
self.ylabel = '%g%s CI' % (100 * (1.0 - self.alpha), '%')
if fit_dist.method.startswith('ml'):
@ -230,7 +254,8 @@ class Profile(object):
self.title = self.title + ' product spacing'
Lmax = fit_dist.LPSmax
else:
raise ValueError("PROFILE is only valid for ML- or MPS- estimators")
raise ValueError(
"PROFILE is only valid for ML- or MPS- estimators")
if fit_dist.par_fix is None:
isnotfixed = np.ones(fit_dist.par.shape, dtype=bool)
@ -242,7 +267,9 @@ class Profile(object):
self.i_fixed = atleast_1d(self.i_fixed)
if 1 - isnotfixed[self.i_fixed]:
raise ValueError("Index i must be equal to an index to one of the free parameters.")
raise ValueError(
"Index i must be equal to an index to one of the free " +
"parameters.")
isfree = isnotfixed
isfree[self.i_fixed] = False
@ -251,12 +278,12 @@ class Profile(object):
self.Lmax = Lmax
self.alpha_Lrange = 0.5 * chi2isf(self.alpha, 1)
self.alpha_cross_level = Lmax - self.alpha_Lrange
#lowLevel = self.alpha_cross_level - self.alpha_Lrange / 7.0
# lowLevel = self.alpha_cross_level - self.alpha_Lrange / 7.0
phatv = fit_dist.par.copy()
self._par = phatv.copy()
## Set up variable to profile and _local_link function
# Set up variable to profile and _local_link function
self.profile_x = not self.x == None
self.profile_logSF = not (self.logSF == None or self.profile_x)
self.profile_par = not (self.profile_x or self.profile_logSF)
@ -264,37 +291,43 @@ class Profile(object):
if self.link == None:
self.link = self.fit_dist.dist.link
if self.profile_par:
self._local_link = lambda fix_par, par : fix_par
self._local_link = lambda fix_par, par: fix_par
self.xlabel = 'phat(%d)' % self.i_fixed
p_opt = self._par[self.i_fixed]
elif self.profile_x:
self.logSF = log(fit_dist.sf(self.x))
self._local_link = lambda fix_par, par : self.link(fix_par, self.logSF, par, self.i_fixed)
self._local_link = lambda fix_par, par: self.link(
fix_par, self.logSF, par, self.i_fixed)
self.xlabel = 'x'
p_opt = self.x
elif self.profile_logSF:
p_opt = self.logSF
self.x = fit_dist.isf(exp(p_opt))
self._local_link = lambda fix_par, par : self.link(self.x, fix_par, par, self.i_fixed)
self._local_link = lambda fix_par, par: self.link(
self.x, fix_par, par, self.i_fixed)
self.xlabel = 'log(SF)'
else:
raise ValueError("You must supply a non-empty quantile (x) or probability (logSF) in order to profile it!")
raise ValueError(
"You must supply a non-empty quantile (x) or probability " +
"(logSF) in order to profile it!")
self.xlabel = self.xlabel + ' (' + fit_dist.dist.name + ')'
phatfree = phatv[self.i_free].copy()
self._set_profile(phatfree, p_opt)
def _correct_Lmax(self, Lmax):
if Lmax > self.Lmax: #foundNewphat = True
warnings.warn('The fitted parameters does not provide the optimum fit. Something wrong with fit')
if Lmax > self.Lmax: # foundNewphat = True
warnings.warn(
'The fitted parameters does not provide the optimum fit. ' +
'Something wrong with fit')
dL = self.Lmax - Lmax
self.alpha_cross_level -= dL
self.Lmax = Lmax
def _profile_optimum(self, phatfree0, p_opt):
phatfree = optimize.fmin(self._profile_fun, phatfree0, args=(p_opt, ), disp=0)
phatfree = optimize.fmin(
self._profile_fun, phatfree0, args=(p_opt,), disp=0)
Lmax = -self._profile_fun(phatfree, p_opt)
self._correct_Lmax(Lmax)
return Lmax, phatfree
@ -305,7 +338,7 @@ class Profile(object):
self.data = numpy.ones_like(pvec) * nan
k1 = (pvec >= p_opt).argmax()
for size, step in ((-1,-1), (pvec.size, 1)):
for size, step in ((-1, -1), (pvec.size, 1)):
phatfree = phatfree0.copy()
for ix in xrange(k1, size, step):
Lmax, phatfree = self._profile_optimum(phatfree, pvec[ix])
@ -358,22 +391,26 @@ class Profile(object):
pvar = self._get_variance()
if pvar<=1e-5 or numpy.isnan(pvar):
pvar = max(abs(p_opt)*0.5, 0.5)
if pvar <= 1e-5 or numpy.isnan(pvar):
pvar = max(abs(p_opt) * 0.5, 0.5)
p_crit = -norm_ppf(self.alpha / 2.0) * sqrt(numpy.ravel(pvar)) * 1.5
p_crit = (-norm_ppf(self.alpha / 2.0) *
sqrt(numpy.ravel(pvar)) * 1.5)
if self.pmin == None:
self.pmin = self._search_pmin(phatfree0, p_opt - 5.0 * p_crit, p_opt)
p_crit_low = (p_opt-self.pmin)/5
self.pmin = self._search_pmin(phatfree0,
p_opt - 5.0 * p_crit, p_opt)
p_crit_low = (p_opt - self.pmin) / 5
if self.pmax == None:
self.pmax = self._search_pmax(phatfree0,p_opt + 5.0 * p_crit, p_opt)
p_crit_up = (self.pmax-p_opt)/5
self.pmax = self._search_pmax(phatfree0,
p_opt + 5.0 * p_crit, p_opt)
p_crit_up = (self.pmax - p_opt) / 5
N4 = numpy.floor(self.N / 4.0)
pvec1 = linspace(self.pmin, p_opt - p_crit_low, N4 + 1)
pvec2 = linspace(p_opt - p_crit_low, p_opt + p_crit_up, self.N - 2 * N4)
pvec2 = linspace(
p_opt - p_crit_low, p_opt + p_crit_up, self.N - 2 * N4)
pvec3 = linspace(p_opt + p_crit_up, self.pmax, N4 + 1)
pvec = numpy.unique(numpy.hstack((pvec1, p_opt, pvec2, pvec3)))
@ -384,8 +421,8 @@ class Profile(object):
def _search_pmin(self, phatfree0, p_min0, p_opt):
phatfree = phatfree0.copy()
dp = p_opt-p_min0
if dp<1e-2:
dp = p_opt - p_min0
if dp < 1e-2:
dp = 0.1
p_min_opt = p_min0
Lmax, phatfree = self._profile_optimum(phatfree, p_opt)
@ -394,10 +431,10 @@ class Profile(object):
Lmax, phatfree = self._profile_optimum(phatfree, p_min)
if np.isnan(Lmax):
dp *= 0.33
elif Lmax < self.alpha_cross_level-self.alpha_Lrange*2:
elif Lmax < self.alpha_cross_level - self.alpha_Lrange * 2:
p_min_opt = p_min
dp *= 0.33
elif Lmax<self.alpha_cross_level:
elif Lmax < self.alpha_cross_level:
p_min_opt = p_min
break
else:
@ -407,8 +444,8 @@ class Profile(object):
def _search_pmax(self, phatfree0, p_max0, p_opt):
phatfree = phatfree0.copy()
dp = p_max0-p_opt
if dp<1e-2:
dp = p_max0 - p_opt
if dp < 1e-2:
dp = 0.1
p_max_opt = p_max0
Lmax, phatfree = self._profile_optimum(phatfree, p_opt)
@ -417,21 +454,21 @@ class Profile(object):
Lmax, phatfree = self._profile_optimum(phatfree, p_max)
if np.isnan(Lmax):
dp *= 0.33
elif Lmax < self.alpha_cross_level-self.alpha_Lrange*2:
elif Lmax < self.alpha_cross_level - self.alpha_Lrange * 2:
p_max_opt = p_max
dp *= 0.33
elif Lmax<self.alpha_cross_level:
elif Lmax < self.alpha_cross_level:
p_max_opt = p_max
break
else:
dp *= 1.67
return p_max_opt
def _myinvfun(self, phatnotfixed):
def _myinvfun(self, phatnotfixed):
mphat = self._par.copy()
mphat[self.i_notfixed] = phatnotfixed;
mphat[self.i_notfixed] = phatnotfixed
prb = exp(self.logSF)
return self.fit_dist.dist.isf(prb, *mphat);
return self.fit_dist.dist.isf(prb, *mphat)
def _myprbfun(self, phatnotfixed):
mphat = self._par.copy()
@ -439,7 +476,6 @@ class Profile(object):
logSF = self.fit_dist.dist.logsf(self.x, *mphat)
return np.where(np.isfinite(logSF), logSF, np.nan)
def _profile_fun(self, free_par, fix_par):
''' Return negative of loglike or logps function
@ -449,7 +485,8 @@ class Profile(object):
'''
par = self._par.copy()
par[self.i_free] = free_par
# _local_link: connects fixed quantile or probability with fixed distribution parameter
# _local_link: connects fixed quantile or probability with fixed
# distribution parameter
par[self.i_fixed] = self._local_link(fix_par, par)
return self.fit_dist.fitfun(par)
@ -457,7 +494,9 @@ class Profile(object):
'''Return confidence interval for profiled parameter
'''
if alpha < self.alpha:
warnings.warn('Might not be able to return CI with alpha less than %g' % self.alpha)
warnings.warn(
'Might not be able to return CI with alpha less than %g' %
self.alpha)
cross_level = self.Lmax - 0.5 * chi2isf(alpha, 1)
ind = findcross(self.data, cross_level)
N = len(ind)
@ -486,19 +525,21 @@ class Profile(object):
def plot(self):
''' Plot profile function with 100(1-alpha)% CI
'''
plotbackend.plot(self.args, self.data,
self.args[[0, -1]], [self.Lmax, ]*2, 'r',
self.args[[0, -1]], [self.alpha_cross_level, ]*2, 'r')
plotbackend.plot(
self.args, self.data,
self.args[[0, -1]], [self.Lmax, ] * 2, 'r',
self.args[[0, -1]], [self.alpha_cross_level, ] * 2, 'r')
plotbackend.title(self.title)
plotbackend.ylabel(self.ylabel)
plotbackend.xlabel(self.xlabel)
def _discretize_adaptive(fun, a, b, tol=0.005, n=5):
'''
Automatic discretization of function, adaptive gridding.
'''
tiny = floatinfo.tiny
n += (np.mod(n, 2) == 0) # make sure n is odd
n += (np.mod(n, 2) == 0) # make sure n is odd
x = np.linspace(a, b, n)
fx = fun(x)
@ -506,7 +547,7 @@ def _discretize_adaptive(fun, a, b, tol=0.005, n=5):
erri = np.hstack((np.zeros((n2, 1)), np.ones((n2, 1)))).ravel()
err = erri.max()
err0 = np.inf
#while (err != err0 and err > tol and n < nmax):
# while (err != err0 and err > tol and n < nmax):
for j in range(50):
if err != err0 and np.any(erri > tol):
err0 = err
@ -514,7 +555,8 @@ def _discretize_adaptive(fun, a, b, tol=0.005, n=5):
I, = np.where(erri > tol)
# double the sample rate in intervals with the most error
y = (np.vstack(((x[I] + x[I - 1]) / 2, (x[I + 1] + x[I]) / 2)).T).ravel()
y = (np.vstack(((x[I] + x[I - 1]) / 2,
(x[I + 1] + x[I]) / 2)).T).ravel()
fy = fun(y)
fy0 = np.interp(y, x, fx)
@ -536,7 +578,10 @@ def _discretize_adaptive(fun, a, b, tol=0.005, n=5):
return x, fx
# class to fit given distribution to data
class FitDistribution(rv_frozen):
'''
Return estimators to shape, location, and scale from data
@ -593,7 +638,6 @@ class FitDistribution(rv_frozen):
par_lower : lower (1-alpha)% confidence bound for the parameters
par_upper : upper (1-alpha)% confidence bound for the parameters
Note
----
`data` is sorted using this function, so if `copydata`==False the data
@ -631,6 +675,7 @@ class FitDistribution(rv_frozen):
>>> Lsf.plot()
>>> sf_ci = Lsf.get_bounds(alpha=0.2)
'''
def __init__(self, dist, data, *args, **kwds):
extradoc = '''
plotfitsummary()
@ -684,13 +729,13 @@ class FitDistribution(rv_frozen):
self.dist = dist
numargs = dist.numargs
self.method=self.alpha=self.par_fix=self.search=self.copydata=None
self.method = self.alpha = self.par_fix = self.search = None
self.copydata = None
m_variables = ['method', 'alpha', 'par_fix', 'search', 'copydata']
m_defaults = ['ml', 0.05, None, True, True]
for (name, val) in zip(m_variables,m_defaults):
setattr(self, name, kwds.get(name,val))
for (name, val) in zip(m_variables, m_defaults):
setattr(self, name, kwds.get(name, val))
#self.method, self.alpha, self.par_fix, self.search, self.copydata = map(kwds.get, m_variables, m_defaults)
if self.method.lower()[:].startswith('mps'):
self._fitfun = dist.nlogps
else:
@ -703,9 +748,9 @@ class FitDistribution(rv_frozen):
par, fixedn = self._fit(*args, **kwds)
self.par = arr(par)
somefixed = len(fixedn)>0
somefixed = len(fixedn) > 0
if somefixed:
self.par_fix = [nan,]*len(self.par)
self.par_fix = [nan, ] * len(self.par)
for i in fixedn:
self.par_fix[i] = self.par[i]
@ -726,15 +771,23 @@ class FitDistribution(rv_frozen):
self.LPSmax = -dist.nlogps(self.par, self.data)
self.pvalue = self._pvalue(self.par, self.data, unknown_numpar=numpar)
def __repr__(self):
params = ['alpha', 'method', 'LLmax', 'LPSmax', 'pvalue',
'par', 'par_lower', 'par_upper', 'par_fix', 'par_cov']
t = ['%s:\n' % self.__class__.__name__]
for par in params:
t.append('%s = %s\n' % (par, str(getattr(self, par))))
return ''.join(t)
def _reduce_func(self, args, kwds):
args = list(args)
Nargs = len(args)
fixedn = []
index = range(Nargs)
names = ['f%d' % n for n in range(Nargs-2)] + ['floc', 'fscale']
names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale']
x0 = args[:]
for n, key in zip(index[::-1], names[::-1]):
if kwds.has_key(key):
if key in kwds:
fixedn.append(n)
args[n] = kwds[key]
del x0[n]
@ -746,7 +799,9 @@ class FitDistribution(rv_frozen):
restore = None
else:
if len(fixedn) == len(index):
raise ValueError, "All parameters fixed. There is nothing to optimize."
raise ValueError("All parameters fixed. " +
"There is nothing to optimize.")
def restore(args, theta):
# Replace with theta for all numbers not in fixedn
# This allows the non-fixed values to vary, but
@ -771,11 +826,11 @@ class FitDistribution(rv_frozen):
Narg = len(args)
if Narg > dist.numargs:
raise ValueError, "Too many input arguments."
start = [None]*2
if (Narg < dist.numargs) or not (kwds.has_key('loc') and
kwds.has_key('scale')):
start = dist._fitstart(data) # get distribution specific starting locations
raise ValueError("Too many input arguments.")
start = [None] * 2
if (Narg < dist.numargs) or not ('loc' in kwds and 'scale' in kwds):
# get distribution specific starting locations
start = dist._fitstart(data)
args += start[Narg:-2]
loc = kwds.get('loc', start[-2])
scale = kwds.get('scale', start[-1])
@ -784,17 +839,18 @@ class FitDistribution(rv_frozen):
if self.search:
optimizer = kwds.get('optimizer', optimize.fmin)
# convert string to function in scipy.optimize
if not callable(optimizer) and isinstance(optimizer, (str, unicode)):
if (not callable(optimizer) and
isinstance(optimizer, (str, unicode))):
if not optimizer.startswith('fmin_'):
optimizer = "fmin_"+optimizer
optimizer = "fmin_" + optimizer
if optimizer == 'fmin_':
optimizer = 'fmin'
try:
optimizer = getattr(optimize, optimizer)
except AttributeError:
raise ValueError, "%s is not a valid optimizer" % optimizer
raise ValueError("%s is not a valid optimizer" % optimizer)
vals = optimizer(func,x0,args=(ravel(data),),disp=0)
vals = optimizer(func, x0, args=(ravel(data),), disp=0)
vals = tuple(vals)
else:
vals = tuple(x0)
@ -806,14 +862,14 @@ class FitDistribution(rv_frozen):
'''Compute covariance
'''
somefixed = (self.par_fix != None) and any(isfinite(self.par_fix))
#H1 = numpy.asmatrix(self.dist.hessian_nnlf(self.par, self.data))
# H1 = numpy.asmatrix(self.dist.hessian_nnlf(self.par, self.data))
H = numpy.asmatrix(self.dist.hessian_nlogps(self.par, self.data))
self.H = H
try:
if somefixed:
allfixed = all(isfinite(self.par_fix))
if allfixed:
self.par_cov[:,:]=0
self.par_cov[:, :] = 0
else:
pcov = -pinv2(H[self.i_notfixed, :][..., self.i_notfixed])
for row, ix in enumerate(list(self.i_notfixed)):
@ -836,30 +892,31 @@ class FitDistribution(rv_frozen):
**kwds : named arguments with keys
i : scalar integer
defining which distribution parameter to profile, i.e. which
parameter to keep fixed (default index to first non-fixed parameter)
parameter to keep fixed (default first non-fixed parameter)
pmin, pmax : real scalars
Interval for either the parameter, phat(i), prb, or x, used in the
optimization of the profile function (default is based on the
100*(1-alpha)% confidence interval computed using the delta method.)
100*(1-alpha)% confidence interval computed with the delta method.)
N : scalar integer
Max number of points used in Lp (default 100)
x : real scalar
Quantile (return value) (default None)
logSF : real scalar
log survival probability,i.e., SF = Prob(X>x;phat) (default None)
link : function connecting the quantile (x) and the survival probability
link : function connecting the x-quantile and the survival probability
(SF) with the fixed distribution parameter, i.e.:
self.par[i] = link(x,logSF,self.par,i), where logSF = log(Prob(X>x;phat)).
self.par[i] = link(x,logSF,self.par,i), where
logSF = log(Prob(X>x;phat)).
This means that if:
1) x is not None then x is profiled
2) logSF is not None then logSF is profiled
3) x and logSF both are None then self.par[i] is profiled (default)
3) x and logSF are None then self.par[i] is profiled (default)
alpha : real scalar
confidence coefficent (default 0.05)
Returns
-------
Lp : Profile log-likelihood function with parameters phat given
the data, phat(i), probability (prb) and quantile (x) (if given), i.e.,
the data, phat(i), probability (prb) and quantile (x), i.e.,
Lp = max(log(f(phat|data,phat(i)))),
or
Lp = max(log(f(phat|data,phat(i),x,prb)))
@ -878,10 +935,11 @@ class FitDistribution(rv_frozen):
Lmax : Maximum value of profile function
alpha_cross_level :
PROFILE is a utility function for making inferences either on a particular
component of the vector phat or the quantile, x, or the probability, SF.
This is usually more accurate than using the delta method assuming
asymptotic normality of the ML estimator or the MPS estimator.
PROFILE is a utility function for making inferences either on a
particular component of the vector phat or the quantile, x, or the
probability, SF. This is usually more accurate than using the delta
method assuming asymptotic normality of the ML estimator or the MPS
estimator.
Examples
--------
@ -917,15 +975,16 @@ class FitDistribution(rv_frozen):
def plotfitsummary(self):
''' Plot various diagnostic plots to asses the quality of the fit.
PLOTFITSUMMARY displays probability plot, density plot, residual quantile
plot and residual probability plot.
PLOTFITSUMMARY displays probability plot, density plot, residual
quantile plot and residual probability plot.
The purpose of these plots is to graphically assess whether the data
could come from the fitted distribution. If so the empirical- CDF and PDF
should follow the model and the residual plots will be linear. Other
distribution types will introduce curvature in the residual plots.
could come from the fitted distribution. If so the empirical- CDF and
PDF should follow the model and the residual plots will be linear.
Other distribution types will introduce curvature in the residual
plots.
'''
plotbackend.subplot(2, 2, 1)
#self.plotecdf()
# self.plotecdf()
self.plotesf()
plotbackend.subplot(2, 2, 2)
self.plotepdf()
@ -938,14 +997,14 @@ class FitDistribution(rv_frozen):
if not self.par_fix == None:
numfix = len(self.i_fixed)
if numfix > 0:
format0 = ', '.join(['%d']*numfix)
format1 = ', '.join(['%g']*numfix)
format0 = ', '.join(['%d'] * numfix)
format1 = ', '.join(['%g'] * numfix)
phatistr = format0 % tuple(self.i_fixed)
phatvstr = format1 % tuple(self.par[self.i_fixed])
fixstr = 'Fixed: phat[%s] = %s ' % (phatistr, phatvstr)
infostr = 'Fit method: %s, Fit p-value: %2.2f %s' % (self.method, self.pvalue, fixstr)
infostr = 'Fit method: %s, Fit p-value: %2.2f %s' % (
self.method, self.pvalue, fixstr)
try:
plotbackend.figtext(0.05, 0.01, infostr)
except:
@ -961,9 +1020,10 @@ class FitDistribution(rv_frozen):
'''
n = len(self.data)
SF = (arange(n, 0, -1)) / n
plotbackend.semilogy(self.data, SF, symb2, self.data, self.sf(self.data), symb1)
#plotbackend.plot(self.data,SF,'b.',self.data,self.sf(self.data),'r-')
plotbackend.xlabel('x');
plotbackend.semilogy(
self.data, SF, symb2, self.data, self.sf(self.data), symb1)
# plotbackend.plot(self.data,SF,'b.',self.data,self.sf(self.data),'r-')
plotbackend.xlabel('x')
plotbackend.ylabel('F(x) (%s)' % self.dist.name)
plotbackend.title('Empirical SF plot')
@ -977,59 +1037,64 @@ class FitDistribution(rv_frozen):
'''
n = len(self.data)
F = (arange(1, n + 1)) / n
plotbackend.plot(self.data, F, symb2, self.data, self.cdf(self.data), symb1)
plotbackend.xlabel('x');
plotbackend.plot(self.data, F, symb2,
self.data, self.cdf(self.data), symb1)
plotbackend.xlabel('x')
plotbackend.ylabel('F(x) (%s)' % self.dist.name)
plotbackend.title('Empirical CDF plot')
def plotepdf(self, symb1='r-', symb2='b-'):
'''Plot Empirical and fitted Probability Density Function
The purpose of the plot is to graphically assess whether
the data could come from the fitted distribution.
If so the histogram should resemble the model density.
Other distribution types will introduce deviations in the plot.
'''
odd = False
def _get_grid(self, odd=False):
x = np.atleast_1d(self.data)
n = np.ceil(4 * np.sqrt(np.sqrt(len(x))))
mn = x.min()
mx = x.max()
d = (mx - mn) / n * 2
e = np.floor(np.log(d) / np.log(10));
e = np.floor(np.log(d) / np.log(10))
m = np.floor(d / 10 ** e)
if m > 5:
m = 5
elif m > 2:
m = 2
d = m * 10 ** e
mn = (np.floor(mn / d) - 1) * d - odd * d / 2
mx = (np.ceil(mx / d) + 1) * d + odd * d / 2
limits = np.arange(mn, mx, d)
bin, limits = np.histogram(self.data, bins=limits, normed=True) #, new=True) @ReservedAssignment
limits.shape = (-1, 1)
xx = limits.repeat(3, axis=1)
xx.shape = (-1,)
xx = xx[1:-1]
bin.shape = (-1, 1)
yy = bin.repeat(3, axis=1)
#yy[0,0] = 0.0 # pdf
yy[:, 0] = 0.0 # histogram
return limits
def _staircase(self, x, y):
xx = x.reshape(-1, 1).repeat(3, axis=1).ravel()[1:-1]
yy = y.reshape(-1, 1).repeat(3, axis=1)
# yy[0,0] = 0.0 # pdf
yy[:, 0] = 0.0 # histogram
yy.shape = (-1,)
yy = numpy.hstack((yy, 0.0))
ymax = yy.max()
#plotbackend.hist(self.data,normed=True,fill=False)
plotbackend.plot(self.data, self.pdf(self.data), symb1, xx, yy, symb2)
return xx, yy
def _get_empirical_pdf(self):
limits = self._get_grid()
pdf, x = np.histogram(self.data, bins=limits, normed=True)
return self._staircase(x, pdf)
def plotepdf(self, symb1='r-', symb2='b-'):
'''Plot Empirical and fitted Probability Density Function
The purpose of the plot is to graphically assess whether
the data could come from the fitted distribution.
If so the histogram should resemble the model density.
Other distribution types will introduce deviations in the plot.
'''
x, pdf = self._get_empirical_pdf()
ymax = pdf.max()
# plotbackend.hist(self.data,normed=True,fill=False)
plotbackend.plot(self.data, self.pdf(self.data), symb1,
x, pdf, symb2)
ax = list(plotbackend.axis())
ax[3] = min(ymax*1.3, ax[3])
ax[3] = min(ymax * 1.3, ax[3])
plotbackend.axis(ax)
plotbackend.xlabel('x');
plotbackend.xlabel('x')
plotbackend.ylabel('f(x) (%s)' % self.dist.name)
plotbackend.title('Density plot')
def plotresq(self, symb1='r-', symb2='b.'):
'''PLOTRESQ displays a residual quantile plot.
@ -1045,33 +1110,34 @@ class FitDistribution(rv_frozen):
plotbackend.plot(self.data, y, symb2, y1, y1, symb1)
plotbackend.xlabel('Empirical')
plotbackend.ylabel('Model (%s)' % self.dist.name)
plotbackend.title('Residual Quantile Plot');
plotbackend.title('Residual Quantile Plot')
plotbackend.axis('tight')
plotbackend.axis('equal')
def plotresprb(self, symb1='r-', symb2='b.'):
''' PLOTRESPRB displays a residual probability plot.
The purpose of the plot is to graphically assess whether
the data could come from the fitted distribution. If so the
plot will be linear. Other distribution types will introduce curvature in the plot.
plot will be linear. Other distribution types will introduce curvature
in the plot.
'''
n = len(self.data);
#ecdf = (0.5:n-0.5)/n;
n = len(self.data)
# ecdf = (0.5:n-0.5)/n;
ecdf = arange(1, n + 1) / (n + 1)
mcdf = self.cdf(self.data)
p1 = [0, 1]
plotbackend.plot(ecdf, mcdf, symb2, p1, p1, symb1)
plotbackend.plot(ecdf, mcdf, symb2,
p1, p1, symb1)
plotbackend.xlabel('Empirical')
plotbackend.ylabel('Model (%s)' % self.dist.name)
plotbackend.title('Residual Probability Plot');
plotbackend.title('Residual Probability Plot')
plotbackend.axis('equal')
plotbackend.axis([0, 1, 0, 1])
def _pvalue(self, theta, x, unknown_numpar=None):
''' Return the P-value for the fit using Moran's negative log Product Spacings statistic
''' Return P-value for the fit using Moran's negative log Product
Spacings statistic
where theta are the parameters (including loc and scale)
@ -1080,7 +1146,9 @@ class FitDistribution(rv_frozen):
dx = numpy.diff(x, axis=0)
tie = (dx == 0)
if any(tie):
warnings.warn('P-value is on the conservative side (i.e. too large) due to ties in the data!')
warnings.warn(
'P-value is on the conservative side (i.e. too large) due to' +
' ties in the data!')
T = self.dist.nlogps(theta, x)
@ -1096,54 +1164,51 @@ class FitDistribution(rv_frozen):
v = (np1) * (pi ** 2. / 6.0 - 1.0) - 0.5 - 1.0 / (6. * (np1))
C1 = m - sqrt(0.5 * n * v)
C2 = sqrt(v / (2.0 * n))
Tn = (T + 0.5 * k * isParUnKnown - C1) / C2 # chi2 with n degrees of freedom
pvalue = chi2sf(Tn, n) #_WAFODIST.chi2.sf(Tn, n)
# chi2 with n degrees of freedom
Tn = (T + 0.5 * k * isParUnKnown - C1) / C2
pvalue = chi2sf(Tn, n) # _WAFODIST.chi2.sf(Tn, n)
return pvalue
def test_doctstrings():
import doctest
doctest.testmod()
def test1():
import wafo.stats as ws
dist = ws.weibull_min
dist = ws.bradford
R = dist.rvs(0.3,size=1000);
#dist = ws.bradford
R = dist.rvs(0.3, size=1000)
phat = FitDistribution(dist, R, method='ml')
# # Better CI for phat.par[i=0]
Lp1 = Profile(phat, i=0) #@UnusedVariable
# Better CI for phat.par[i=0]
Lp1 = Profile(phat, i=0) # @UnusedVariable
# Lp2 = Profile(phat, i=2)
# SF = 1./990
# x = phat.isf(SF)
#
# # CI for x
# CI for x
# Lx = Profile(phat, i=0,x=x,link=phat.dist.link)
# Lx.plot()
# x_ci = Lx.get_bounds(alpha=0.2)
#
# # CI for logSF=log(SF)
# CI for logSF=log(SF)
# Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
# Lsf.plot()
# sf_ci = Lsf.get_bounds(alpha=0.2)
# pass
# _WAFODIST = ppimport('wafo.stats.distributions')
# #nbinom(10, 0.75).rvs(3)
# nbinom(10, 0.75).rvs(3)
# import matplotlib
# matplotlib.interactive(True)
# t = _WAFODIST.bernoulli(0.75).rvs(3)
# x = np.r_[5, 10]
# npr = np.r_[9, 9]
# t2 = _WAFODIST.bd0(x, npr)
# #Examples MLE and better CI for phat.par[0]
# Examples MLE and better CI for phat.par[0]
# R = _WAFODIST.weibull_min.rvs(1, size=100);
# phat = _WAFODIST.weibull_min.fit(R, 1, 1, par_fix=[nan, 0, nan])
# Lp = phat.profile(i=0)
@ -1152,18 +1217,18 @@ def test1():
# R = 1. / 990
# x = phat.isf(R)
#
# # CI for x
# CI for x
# Lx = phat.profile(i=0, x=x)
# Lx.plot()
# Lx.get_bounds(alpha=0.2)
#
# # CI for logSF=log(SF)
# CI for logSF=log(SF)
# Lpr = phat.profile(i=0, logSF=log(R), link=phat.dist.link)
# Lpr.plot()
# Lpr.get_bounds(alpha=0.075)
#
# _WAFODIST.dlaplace.stats(0.8, loc=0)
## pass
# pass
# t = _WAFODIST.planck(0.51000000000000001)
# t.ppf(0.5)
# t = _WAFODIST.zipf(2)
@ -1172,15 +1237,14 @@ def test1():
# _WAFODIST.rice.rvs(1)
# x = plb.linspace(-5, 5)
# y = _WAFODIST.genpareto.cdf(x, 0)
# #plb.plot(x,y)
# #plb.show()
# plb.plot(x,y)
# plb.show()
#
#
# on = ones((2, 3))
# r = _WAFODIST.genpareto.rvs(0, size=100)
# pht = _WAFODIST.genpareto.fit(r, 1, par_fix=[0, 0, nan])
# lp = pht.profile()
if __name__ == '__main__':
test1()
#test_doctstrings()
# test_doctstrings()

@ -0,0 +1,513 @@
#-------------------------------------------------------------------------------
#
# Define classes for (uni/multi)-variate kernel density estimation.
#
# Currently, only Gaussian kernels are implemented.
#
# Written by: Robert Kern
#
# Date: 2004-08-09
#
# Modified: 2005-02-10 by Robert Kern.
# Contributed to Scipy
# 2005-10-07 by Robert Kern.
# Some fixes to match the new scipy_core
#
# Copyright 2004-2005 by Enthought, Inc.
#
#-------------------------------------------------------------------------------
from __future__ import division, print_function, absolute_import
# Standard library imports.
import warnings
# Scipy imports.
from scipy.lib.six import callable, string_types
from scipy import linalg, special
from numpy import atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt, \
ravel, power, atleast_1d, squeeze, sum, transpose
import numpy as np
from numpy.random import randint, multivariate_normal
# Local imports.
from . import mvn
__all__ = ['gaussian_kde']
class gaussian_kde(object):
"""Representation of a kernel-density estimate using Gaussian kernels.
Kernel density estimation is a way to estimate the probability density
function (PDF) of a random variable in a non-parametric way.
`gaussian_kde` works for both uni-variate and multi-variate data. It
includes automatic bandwidth determination. The estimation works best for
a unimodal distribution; bimodal or multi-modal distributions tend to be
oversmoothed.
Parameters
----------
dataset : array_like
Datapoints to estimate from. In case of univariate data this is a 1-D
array, otherwise a 2-D array with shape (# of dims, # of data).
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable. If a scalar,
this will be used directly as `kde.factor`. If a callable, it should
take a `gaussian_kde` instance as only parameter and return a scalar.
If None (default), 'scott' is used. See Notes for more details.
Attributes
----------
dataset : ndarray
The dataset with which `gaussian_kde` was initialized.
d : int
Number of dimensions.
n : int
Number of datapoints.
factor : float
The bandwidth factor, obtained from `kde.covariance_factor`, with which
the covariance matrix is multiplied.
covariance : ndarray
The covariance matrix of `dataset`, scaled by the calculated bandwidth
(`kde.factor`).
inv_cov : ndarray
The inverse of `covariance`.
Methods
-------
kde.evaluate(points) : ndarray
Evaluate the estimated pdf on a provided set of points.
kde(points) : ndarray
Same as kde.evaluate(points)
kde.integrate_gaussian(mean, cov) : float
Multiply pdf with a specified Gaussian and integrate over the whole
domain.
kde.integrate_box_1d(low, high) : float
Integrate pdf (1D only) between two bounds.
kde.integrate_box(low_bounds, high_bounds) : float
Integrate pdf over a rectangular space between low_bounds and
high_bounds.
kde.integrate_kde(other_kde) : float
Integrate two kernel density estimates multiplied together.
kde.resample(size=None) : ndarray
Randomly sample a dataset from the estimated pdf.
kde.set_bandwidth(bw_method='scott') : None
Computes the bandwidth, i.e. the coefficient that multiplies the data
covariance matrix to obtain the kernel covariance matrix.
.. versionadded:: 0.11.0
kde.covariance_factor : float
Computes the coefficient (`kde.factor`) that multiplies the data
covariance matrix to obtain the kernel covariance matrix.
The default is `scotts_factor`. A subclass can overwrite this method
to provide a different method, or set it through a call to
`kde.set_bandwidth`.
Notes
-----
Bandwidth selection strongly influences the estimate obtained from the KDE
(much more so than the actual shape of the kernel). Bandwidth selection
can be done by a "rule of thumb", by cross-validation, by "plug-in
methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde`
uses a rule of thumb, the default is Scott's Rule.
Scott's Rule [1]_, implemented as `scotts_factor`, is::
n**(-1./(d+4)),
with ``n`` the number of data points and ``d`` the number of dimensions.
Silverman's Rule [2]_, implemented as `silverman_factor`, is::
n * (d + 2) / 4.)**(-1. / (d + 4)).
Good general descriptions of kernel density estimation can be found in [1]_
and [2]_, the mathematics for this multi-dimensional implementation can be
found in [1]_.
References
----------
.. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and
Visualization", John Wiley & Sons, New York, Chicester, 1992.
.. [2] B.W. Silverman, "Density Estimation for Statistics and Data
Analysis", Vol. 26, Monographs on Statistics and Applied Probability,
Chapman and Hall, London, 1986.
.. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A
Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993.
.. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel
conditional density estimation", Computational Statistics & Data
Analysis, Vol. 36, pp. 279-298, 2001.
Examples
--------
Generate some random two-dimensional data:
>>> from scipy import stats
>>> def measure(n):
>>> "Measurement model, return two coupled measurements."
>>> m1 = np.random.normal(size=n)
>>> m2 = np.random.normal(scale=0.5, size=n)
>>> return m1+m2, m1-m2
>>> m1, m2 = measure(2000)
>>> xmin = m1.min()
>>> xmax = m1.max()
>>> ymin = m2.min()
>>> ymax = m2.max()
Perform a kernel density estimate on the data:
>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = stats.gaussian_kde(values)
>>> Z = np.reshape(kernel(positions).T, X.shape)
Plot the results:
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
... extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)
>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])
>>> plt.show()
"""
def __init__(self, dataset, bw_method=None):
self.dataset = atleast_2d(dataset)
if not self.dataset.size > 1:
raise ValueError("`dataset` input should have multiple elements.")
self.d, self.n = self.dataset.shape
self.set_bandwidth(bw_method=bw_method)
def evaluate(self, points):
"""Evaluate the estimated pdf on a set of points.
Parameters
----------
points : (# of dimensions, # of points)-array
Alternatively, a (# of dimensions,) vector can be passed in and
treated as a single point.
Returns
-------
values : (# of points,)-array
The values at each point.
Raises
------
ValueError : if the dimensionality of the input points is different than
the dimensionality of the KDE.
"""
points = atleast_2d(points)
d, m = points.shape
if d != self.d:
if d == 1 and m == self.d:
# points was passed in as a row vector
points = reshape(points, (self.d, 1))
m = 1
else:
msg = "points have dimension %s, dataset has dimension %s" % (d,
self.d)
raise ValueError(msg)
result = zeros((m,), dtype=np.float)
if m >= self.n:
# there are more points than data, so loop over data
for i in range(self.n):
diff = self.dataset[:, i, newaxis] - points
tdiff = dot(self.inv_cov, diff)
energy = sum(diff*tdiff,axis=0) / 2.0
result = result + exp(-energy)
else:
# loop over points
for i in range(m):
diff = self.dataset - points[:, i, newaxis]
tdiff = dot(self.inv_cov, diff)
energy = sum(diff * tdiff, axis=0) / 2.0
result[i] = sum(exp(-energy), axis=0)
result = result / self._norm_factor
return result
__call__ = evaluate
def integrate_gaussian(self, mean, cov):
"""
Multiply estimated density by a multivariate Gaussian and integrate
over the whole space.
Parameters
----------
mean : aray_like
A 1-D array, specifying the mean of the Gaussian.
cov : array_like
A 2-D array, specifying the covariance matrix of the Gaussian.
Returns
-------
result : scalar
The value of the integral.
Raises
------
ValueError :
If the mean or covariance of the input Gaussian differs from
the KDE's dimensionality.
"""
mean = atleast_1d(squeeze(mean))
cov = atleast_2d(cov)
if mean.shape != (self.d,):
raise ValueError("mean does not have dimension %s" % self.d)
if cov.shape != (self.d, self.d):
raise ValueError("covariance does not have dimension %s" % self.d)
# make mean a column vector
mean = mean[:, newaxis]
sum_cov = self.covariance + cov
diff = self.dataset - mean
tdiff = dot(linalg.inv(sum_cov), diff)
energies = sum(diff * tdiff, axis=0) / 2.0
result = sum(exp(-energies), axis=0) / sqrt(linalg.det(2 * pi *
sum_cov)) / self.n
return result
def integrate_box_1d(self, low, high):
"""
Computes the integral of a 1D pdf between two bounds.
Parameters
----------
low : scalar
Lower bound of integration.
high : scalar
Upper bound of integration.
Returns
-------
value : scalar
The result of the integral.
Raises
------
ValueError
If the KDE is over more than one dimension.
"""
if self.d != 1:
raise ValueError("integrate_box_1d() only handles 1D pdfs")
stdev = ravel(sqrt(self.covariance))[0]
normalized_low = ravel((low - self.dataset) / stdev)
normalized_high = ravel((high - self.dataset) / stdev)
value = np.mean(special.ndtr(normalized_high) -
special.ndtr(normalized_low))
return value
def integrate_box(self, low_bounds, high_bounds, maxpts=None):
"""Computes the integral of a pdf over a rectangular interval.
Parameters
----------
low_bounds : array_like
A 1-D array containing the lower bounds of integration.
high_bounds : array_like
A 1-D array containing the upper bounds of integration.
maxpts : int, optional
The maximum number of points to use for integration.
Returns
-------
value : scalar
The result of the integral.
"""
if maxpts is not None:
extra_kwds = {'maxpts': maxpts}
else:
extra_kwds = {}
value, inform = mvn.mvnun(low_bounds, high_bounds, self.dataset,
self.covariance, **extra_kwds)
if inform:
msg = ('An integral in mvn.mvnun requires more points than %s' %
(self.d * 1000))
warnings.warn(msg)
return value
def integrate_kde(self, other):
"""
Computes the integral of the product of this kernel density estimate
with another.
Parameters
----------
other : gaussian_kde instance
The other kde.
Returns
-------
value : scalar
The result of the integral.
Raises
------
ValueError
If the KDEs have different dimensionality.
"""
if other.d != self.d:
raise ValueError("KDEs are not the same dimensionality")
# we want to iterate over the smallest number of points
if other.n < self.n:
small = other
large = self
else:
small = self
large = other
sum_cov = small.covariance + large.covariance
result = 0.0
for i in range(small.n):
mean = small.dataset[:, i, newaxis]
diff = large.dataset - mean
tdiff = dot(linalg.inv(sum_cov), diff)
energies = sum(diff * tdiff, axis=0) / 2.0
result += sum(exp(-energies), axis=0)
result /= sqrt(linalg.det(2 * pi * sum_cov)) * large.n * small.n
return result
def resample(self, size=None):
"""
Randomly sample a dataset from the estimated pdf.
Parameters
----------
size : int, optional
The number of samples to draw. If not provided, then the size is
the same as the underlying dataset.
Returns
-------
resample : (self.d, `size`) ndarray
The sampled dataset.
"""
if size is None:
size = self.n
norm = transpose(multivariate_normal(zeros((self.d,), float),
self.covariance, size=size))
indices = randint(0, self.n, size=size)
means = self.dataset[:, indices]
return means + norm
def scotts_factor(self):
return power(self.n, -1./(self.d+4))
def silverman_factor(self):
return power(self.n*(self.d+2.0)/4.0, -1./(self.d+4))
# Default method to calculate bandwidth, can be overwritten by subclass
covariance_factor = scotts_factor
def set_bandwidth(self, bw_method=None):
"""Compute the estimator bandwidth with given method.
The new bandwidth calculated after a call to `set_bandwidth` is used
for subsequent evaluations of the estimated density.
Parameters
----------
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable. If a
scalar, this will be used directly as `kde.factor`. If a callable,
it should take a `gaussian_kde` instance as only parameter and
return a scalar. If None (default), nothing happens; the current
`kde.covariance_factor` method is kept.
Notes
-----
.. versionadded:: 0.11
Examples
--------
>>> x1 = np.array([-7, -5, 1, 4, 5.])
>>> kde = stats.gaussian_kde(x1)
>>> xs = np.linspace(-10, 10, num=50)
>>> y1 = kde(xs)
>>> kde.set_bandwidth(bw_method='silverman')
>>> y2 = kde(xs)
>>> kde.set_bandwidth(bw_method=kde.factor / 3.)
>>> y3 = kde(xs)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo',
... label='Data points (rescaled)')
>>> ax.plot(xs, y1, label='Scott (default)')
>>> ax.plot(xs, y2, label='Silverman')
>>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
>>> ax.legend()
>>> plt.show()
"""
if bw_method is None:
pass
elif bw_method == 'scott':
self.covariance_factor = self.scotts_factor
elif bw_method == 'silverman':
self.covariance_factor = self.silverman_factor
elif np.isscalar(bw_method) and not isinstance(bw_method, string_types):
self._bw_method = 'use constant'
self.covariance_factor = lambda: bw_method
elif callable(bw_method):
self._bw_method = bw_method
self.covariance_factor = lambda: self._bw_method(self)
else:
msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
"or a callable."
raise ValueError(msg)
self._compute_covariance()
def _compute_covariance(self):
"""Computes the covariance matrix for each Gaussian kernel using
covariance_factor().
"""
self.factor = self.covariance_factor()
# Cache covariance and inverse covariance of the data
if not hasattr(self, '_data_inv_cov'):
self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1,
bias=False))
self._data_inv_cov = linalg.inv(self._data_covariance)
self.covariance = self._data_covariance * self.factor**2
self.inv_cov = self._data_inv_cov / self.factor**2
self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n

File diff suppressed because it is too large Load Diff

@ -0,0 +1,82 @@
"""
===================================================================
Statistical functions for masked arrays (:mod:`scipy.stats.mstats`)
===================================================================
.. currentmodule:: scipy.stats.mstats
This module contains a large number of statistical functions that can
be used with masked arrays.
Most of these functions are similar to those in scipy.stats but might
have small differences in the API or in the algorithm used. Since this
is a relatively new package, some API changes are still possible.
.. autosummary::
:toctree: generated/
argstoarray
betai
chisquare
count_tied_groups
describe
f_oneway
f_value_wilks_lambda
find_repeats
friedmanchisquare
gmean
hmean
kendalltau
kendalltau_seasonal
kruskalwallis
kruskalwallis
ks_twosamp
ks_twosamp
kurtosis
kurtosistest
linregress
mannwhitneyu
plotting_positions
mode
moment
mquantiles
msign
normaltest
obrientransform
pearsonr
plotting_positions
pointbiserialr
rankdata
scoreatpercentile
sem
signaltonoise
skew
skewtest
spearmanr
theilslopes
threshold
tmax
tmean
tmin
trim
trima
trimboth
trimmed_stde
trimr
trimtail
tsem
ttest_onesamp
ttest_ind
ttest_onesamp
ttest_rel
tvar
variation
winsorize
zmap
zscore
"""
from __future__ import division, print_function, absolute_import
from .mstats_basic import *
from .mstats_extras import *

File diff suppressed because it is too large Load Diff

@ -0,0 +1,466 @@
"""
Additional statistics functions, with support to MA.
:author: Pierre GF Gerard-Marchant
:contact: pierregm_at_uga_edu
:date: $Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $
:version: $Id: morestats.py 3473 2007-10-29 15:18:13Z jarrod.millman $
"""
from __future__ import division, print_function, absolute_import
__author__ = "Pierre GF Gerard-Marchant"
__docformat__ = "restructuredtext en"
__all__ = ['compare_medians_ms',
'hdquantiles', 'hdmedian', 'hdquantiles_sd',
'idealfourths',
'median_cihs','mjci','mquantiles_cimj',
'rsh',
'trimmed_mean_ci',]
import numpy as np
from numpy import float_, int_, ndarray
import numpy.ma as ma
from numpy.ma import MaskedArray
from . import mstats_basic as mstats
from scipy.stats.distributions import norm, beta, t, binom
#####--------------------------------------------------------------------------
#---- --- Quantiles ---
#####--------------------------------------------------------------------------
def hdquantiles(data, prob=list([.25,.5,.75]), axis=None, var=False,):
"""
Computes quantile estimates with the Harrell-Davis method.
The quantile estimates are calculated as a weighted linear combination
of order statistics.
Parameters
----------
data : array_like
Data array.
prob : sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened
array.
var : boolean
Whether to return the variance of the estimate.
Returns
-------
hdquantiles : MaskedArray
A (p,) array of quantiles (if `var` is False), or a (2,p) array of
quantiles and variances (if `var` is True), where ``p`` is the
number of quantiles.
"""
def _hd_1D(data,prob,var):
"Computes the HD quantiles for a 1D array. Returns nan for invalid data."
xsorted = np.squeeze(np.sort(data.compressed().view(ndarray)))
# Don't use length here, in case we have a numpy scalar
n = xsorted.size
#.........
hd = np.empty((2,len(prob)), float_)
if n < 2:
hd.flat = np.nan
if var:
return hd
return hd[0]
#.........
v = np.arange(n+1) / float(n)
betacdf = beta.cdf
for (i,p) in enumerate(prob):
_w = betacdf(v, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
hd_mean = np.dot(w, xsorted)
hd[0,i] = hd_mean
#
hd[1,i] = np.dot(w, (xsorted-hd_mean)**2)
#
hd[0, prob == 0] = xsorted[0]
hd[0, prob == 1] = xsorted[-1]
if var:
hd[1, prob == 0] = hd[1, prob == 1] = np.nan
return hd
return hd[0]
# Initialization & checks ---------
data = ma.array(data, copy=False, dtype=float_)
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None) or (data.ndim == 1):
result = _hd_1D(data, p, var)
else:
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim)
result = ma.apply_along_axis(_hd_1D, axis, data, p, var)
#
return ma.fix_invalid(result, copy=False)
#..............................................................................
def hdmedian(data, axis=-1, var=False):
"""
Returns the Harrell-Davis estimate of the median along the given axis.
Parameters
----------
data : ndarray
Data array.
axis : int
Axis along which to compute the quantiles. If None, use a flattened
array.
var : boolean
Whether to return the variance of the estimate.
"""
result = hdquantiles(data,[0.5], axis=axis, var=var)
return result.squeeze()
#..............................................................................
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
"""
The standard error of the Harrell-Davis quantile estimates by jackknife.
Parameters
----------
data : array_like
Data array.
prob : sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened
array.
Returns
-------
hdquantiles_sd : MaskedArray
Standard error of the Harrell-Davis quantile estimates.
"""
def _hdsd_1D(data,prob):
"Computes the std error for 1D arrays."
xsorted = np.sort(data.compressed())
n = len(xsorted)
#.........
hdsd = np.empty(len(prob), float_)
if n < 2:
hdsd.flat = np.nan
#.........
vv = np.arange(n) / float(n-1)
betacdf = beta.cdf
#
for (i,p) in enumerate(prob):
_w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
mx_ = np.fromiter([np.dot(w,xsorted[np.r_[list(range(0,k)),
list(range(k+1,n))].astype(int_)])
for k in range(n)], dtype=float_)
mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n))
return hdsd
# Initialization & checks ---------
data = ma.array(data, copy=False, dtype=float_)
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _hdsd_1D(data, p)
else:
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim)
result = ma.apply_along_axis(_hdsd_1D, axis, data, p)
#
return ma.fix_invalid(result, copy=False).ravel()
#####--------------------------------------------------------------------------
#---- --- Confidence intervals ---
#####--------------------------------------------------------------------------
def trimmed_mean_ci(data, limits=(0.2,0.2), inclusive=(True,True),
alpha=0.05, axis=None):
"""
Selected confidence interval of the trimmed mean along the given axis.
Parameters
----------
data : array_like
Input data.
limits : {None, tuple}, optional
None or a two item tuple.
Tuple of the percentages to cut on each side of the array, with respect
to the number of unmasked data, as floats between 0. and 1. If ``n``
is the number of unmasked data before trimming, then
(``n`` * `limits[0]`)th smallest data and (``n`` * `limits[1]`)th
largest data are masked. The total number of unmasked data after
trimming is ``n`` * (1. - sum(`limits`)).
The value of one limit can be set to None to indicate an open interval.
Defaults to (0.2, 0.2).
inclusive : (2,) tuple of boolean, optional
If relative==False, tuple indicating whether values exactly equal to
the absolute limits are allowed.
If relative==True, tuple indicating whether the number of data being
masked on each side should be rounded (True) or truncated (False).
Defaults to (True, True).
alpha : float, optional
Confidence level of the intervals.
Defaults to 0.05.
axis : int, optional
Axis along which to cut. If None, uses a flattened version of `data`.
Defaults to None.
Returns
-------
trimmed_mean_ci : (2,) ndarray
The lower and upper confidence intervals of the trimmed data.
"""
data = ma.array(data, copy=False)
trimmed = mstats.trimr(data, limits=limits, inclusive=inclusive, axis=axis)
tmean = trimmed.mean(axis)
tstde = mstats.trimmed_stde(data,limits=limits,inclusive=inclusive,axis=axis)
df = trimmed.count(axis) - 1
tppf = t.ppf(1-alpha/2.,df)
return np.array((tmean - tppf*tstde, tmean+tppf*tstde))
#..............................................................................
def mjci(data, prob=[0.25,0.5,0.75], axis=None):
"""
Returns the Maritz-Jarrett estimators of the standard error of selected
experimental quantiles of the data.
Parameters
----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened
array.
"""
def _mjci_1D(data, p):
data = np.sort(data.compressed())
n = data.size
prob = (np.array(p) * n + 0.5).astype(int_)
betacdf = beta.cdf
#
mj = np.empty(len(prob), float_)
x = np.arange(1,n+1, dtype=float_) / n
y = x - 1./n
for (i,m) in enumerate(prob):
(m1,m2) = (m-1, n-m)
W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m)
C1 = np.dot(W,data)
C2 = np.dot(W,data**2)
mj[i] = np.sqrt(C2 - C1**2)
return mj
#
data = ma.array(data, copy=False)
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim)
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
return _mjci_1D(data, p)
else:
return ma.apply_along_axis(_mjci_1D, axis, data, p)
#..............................................................................
def mquantiles_cimj(data, prob=[0.25,0.50,0.75], alpha=0.05, axis=None):
"""
Computes the alpha confidence interval for the selected quantiles of the
data, with Maritz-Jarrett estimators.
Parameters
----------
data : ndarray
Data array.
prob : sequence
Sequence of quantiles to compute.
alpha : float
Confidence level of the intervals.
axis : integer
Axis along which to compute the quantiles.
If None, use a flattened array.
"""
alpha = min(alpha, 1-alpha)
z = norm.ppf(1-alpha/2.)
xq = mstats.mquantiles(data, prob, alphap=0, betap=0, axis=axis)
smj = mjci(data, prob, axis=axis)
return (xq - z * smj, xq + z * smj)
#.............................................................................
def median_cihs(data, alpha=0.05, axis=None):
"""
Computes the alpha-level confidence interval for the median of the data.
Uses the Hettmasperger-Sheather method.
Parameters
----------
data : array_like
Input data. Masked values are discarded. The input should be 1D only,
or `axis` should be set to None.
alpha : float
Confidence level of the intervals.
axis : integer
Axis along which to compute the quantiles. If None, use a flattened
array.
Returns
-------
median_cihs :
Alpha level confidence interval.
"""
def _cihs_1D(data, alpha):
data = np.sort(data.compressed())
n = len(data)
alpha = min(alpha, 1-alpha)
k = int(binom._ppf(alpha/2., n, 0.5))
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
if gk < 1-alpha:
k -= 1
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5)
I = (gk - 1 + alpha)/(gk - gkk)
lambd = (n-k) * I / float(k + (n-2*k)*I)
lims = (lambd*data[k] + (1-lambd)*data[k-1],
lambd*data[n-k-1] + (1-lambd)*data[n-k])
return lims
data = ma.rray(data, copy=False)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _cihs_1D(data.compressed(), alpha)
else:
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim)
result = ma.apply_along_axis(_cihs_1D, axis, data, alpha)
#
return result
#..............................................................................
def compare_medians_ms(group_1, group_2, axis=None):
"""
Compares the medians from two independent groups along the given axis.
The comparison is performed using the McKean-Schrader estimate of the
standard error of the medians.
Parameters
----------
group_1 : array_like
First dataset.
group_2 : array_like
Second dataset.
axis : int, optional
Axis along which the medians are estimated. If None, the arrays are
flattened. If `axis` is not None, then `group_1` and `group_2`
should have the same shape.
Returns
-------
compare_medians_ms : {float, ndarray}
If `axis` is None, then returns a float, otherwise returns a 1-D
ndarray of floats with a length equal to the length of `group_1`
along `axis`.
"""
(med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis))
(std_1, std_2) = (mstats.stde_median(group_1, axis=axis),
mstats.stde_median(group_2, axis=axis))
W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2)
return 1 - norm.cdf(W)
def idealfourths(data, axis=None):
"""
Returns an estimate of the lower and upper quartiles.
Uses the ideal fourths algorithm.
Parameters
----------
data : array_like
Input array.
axis : int, optional
Axis along which the quartiles are estimated. If None, the arrays are
flattened.
Returns
-------
idealfourths : {list of floats, masked array}
Returns the two internal values that divide `data` into four parts
using the ideal fourths algorithm either along the flattened array
(if `axis` is None) or along `axis` of `data`.
"""
def _idf(data):
x = data.compressed()
n = len(x)
if n < 3:
return [np.nan,np.nan]
(j,h) = divmod(n/4. + 5/12.,1)
j = int(j)
qlo = (1-h)*x[j-1] + h*x[j]
k = n - j
qup = (1-h)*x[k] + h*x[k-1]
return [qlo, qup]
data = ma.sort(data, axis=axis).view(MaskedArray)
if (axis is None):
return _idf(data)
else:
return ma.apply_along_axis(_idf, axis, data)
def rsh(data, points=None):
"""
Evaluates Rosenblatt's shifted histogram estimators for each point
on the dataset 'data'.
Parameters
----------
data : sequence
Input data. Masked values are ignored.
points : sequence
Sequence of points where to evaluate Rosenblatt shifted histogram.
If None, use the data.
"""
data = ma.array(data, copy=False)
if points is None:
points = data
else:
points = np.array(points, copy=False, ndmin=1)
if data.ndim != 1:
raise AttributeError("The input array should be 1D only !")
n = data.count()
r = idealfourths(data, axis=None)
h = 1.2 * (r[-1]-r[0]) / n**(1./5)
nhi = (data[:,None] <= points[None,:] + h).sum(0)
nlo = (data[:,None] < points[None,:] - h).sum(0)
return (nhi-nlo) / (2.*n*h)
###############################################################################

@ -0,0 +1,76 @@
from __future__ import division, print_function, absolute_import
from numpy import vectorize, deprecate
from numpy.random import random_sample
__all__ = ['randwppf', 'randwcdf']
# XXX: Are these needed anymore?
#####################################
# General purpose continuous
######################################
@deprecate(message="Deprecated in scipy 0.14.0, use "
"distribution-specific rvs() method instead")
def randwppf(ppf, args=(), size=None):
"""
returns an array of randomly distributed integers of a distribution
whose percent point function (inverse of the CDF or quantile function)
is given.
args is a tuple of extra arguments to the ppf function (i.e. shape,
location, scale), and size is the size of the output. Note the ppf
function must accept an array of q values to compute over.
"""
U = random_sample(size=size)
return ppf(*(U,)+args)
@deprecate(message="Deprecated in scipy 0.14.0, use "
"distribution-specific rvs() method instead")
def randwcdf(cdf, mean=1.0, args=(), size=None):
"""
Returns an array of randomly distributed integers given a CDF.
Given a cumulative distribution function (CDF) returns an array of
randomly distributed integers that would satisfy the CDF.
Parameters
----------
cdf : function
CDF function that accepts a single value and `args`, and returns
an single value.
mean : float, optional
The mean of the distribution which helps the solver. Defaults
to 1.0.
args : tuple, optional
Extra arguments to the cdf function (i.e. shape, location, scale)
size : {int, None}, optional
Is the size of the output. If None, only 1 value will be returned.
Returns
-------
randwcdf : ndarray
Array of random numbers.
Notes
-----
Can use the ``scipy.stats.distributions.*.cdf`` functions for the
`cdf` parameter.
"""
import scipy.optimize as optimize
def _ppfopt(x, q, *nargs):
newargs = (x,)+nargs
return cdf(*newargs) - q
def _ppf(q, *nargs):
return optimize.fsolve(_ppfopt, mean, args=(q,)+nargs)
_vppf = vectorize(_ppf)
U = random_sample(size=size)
return _vppf(*(U,)+args)

@ -307,7 +307,7 @@ _add_doc(u, """Text literal""")
if PY3:
import builtins
import builtins # @UnresolvedImport
exec_ = getattr(builtins, "exec")
def reraise(tp, value, tb=None):

File diff suppressed because it is too large Load Diff

@ -0,0 +1,154 @@
from __future__ import division, print_function, absolute_import
import inspect
import warnings
import numpy as np
import numpy.testing as npt
#from scipy.lib._version import NumpyVersion
from scipy import stats
#NUMPY_BELOW_1_7 = NumpyVersion(np.__version__) < '1.7.0'
NUMPY_BELOW_1_7 =np.__version__ < '1.7.0'
def check_normalization(distfn, args, distname):
norm_moment = distfn.moment(0, *args)
npt.assert_allclose(norm_moment, 1.0)
# this is a temporary plug: either ncf or expect is problematic;
# best be marked as a knownfail, but I've no clue how to do it.
if distname == "ncf":
atol, rtol = 1e-5, 0
else:
atol, rtol = 1e-7, 1e-7
normalization_expect = distfn.expect(lambda x: 1, args=args)
npt.assert_allclose(normalization_expect, 1.0, atol=atol, rtol=rtol,
err_msg=distname, verbose=True)
normalization_cdf = distfn.cdf(distfn.b, *args)
npt.assert_allclose(normalization_cdf, 1.0)
def check_moment(distfn, arg, m, v, msg):
m1 = distfn.moment(1, *arg)
m2 = distfn.moment(2, *arg)
if not np.isinf(m):
npt.assert_almost_equal(m1, m, decimal=10, err_msg=msg +
' - 1st moment')
else: # or np.isnan(m1),
npt.assert_(np.isinf(m1),
msg + ' - 1st moment -infinite, m1=%s' % str(m1))
if not np.isinf(v):
npt.assert_almost_equal(m2 - m1 * m1, v, decimal=10, err_msg=msg +
' - 2ndt moment')
else: # or np.isnan(m2),
npt.assert_(np.isinf(m2),
msg + ' - 2nd moment -infinite, m2=%s' % str(m2))
def check_mean_expect(distfn, arg, m, msg):
if np.isfinite(m):
m1 = distfn.expect(lambda x: x, arg)
npt.assert_almost_equal(m1, m, decimal=5, err_msg=msg +
' - 1st moment (expect)')
def check_var_expect(distfn, arg, m, v, msg):
if np.isfinite(v):
m2 = distfn.expect(lambda x: x*x, arg)
npt.assert_almost_equal(m2, v + m*m, decimal=5, err_msg=msg +
' - 2st moment (expect)')
def check_skew_expect(distfn, arg, m, v, s, msg):
if np.isfinite(s):
m3e = distfn.expect(lambda x: np.power(x-m, 3), arg)
npt.assert_almost_equal(m3e, s * np.power(v, 1.5),
decimal=5, err_msg=msg + ' - skew')
else:
npt.assert_(np.isnan(s))
def check_kurt_expect(distfn, arg, m, v, k, msg):
if np.isfinite(k):
m4e = distfn.expect(lambda x: np.power(x-m, 4), arg)
npt.assert_allclose(m4e, (k + 3.) * np.power(v, 2), atol=1e-5, rtol=1e-5,
err_msg=msg + ' - kurtosis')
else:
npt.assert_(np.isnan(k))
def check_entropy(distfn, arg, msg):
ent = distfn.entropy(*arg)
npt.assert_(not np.isnan(ent), msg + 'test Entropy is nan')
def check_private_entropy(distfn, args, superclass):
# compare a generic _entropy with the distribution-specific implementation
npt.assert_allclose(distfn._entropy(*args),
superclass._entropy(distfn, *args))
def check_edge_support(distfn, args):
# Make sure the x=self.a and self.b are handled correctly.
x = [distfn.a, distfn.b]
if isinstance(distfn, stats.rv_continuous):
npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0])
npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0])
npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0])
npt.assert_equal(distfn.logsf(x, *args), [0.0, -np.inf])
if isinstance(distfn, stats.rv_discrete):
x = [distfn.a - 1, distfn.b]
npt.assert_equal(distfn.ppf([0.0, 1.0], *args), x)
npt.assert_equal(distfn.isf([0.0, 1.0], *args), x[::-1])
# out-of-bounds for isf & ppf
npt.assert_(np.isnan(distfn.isf([-1, 2], *args)).all())
npt.assert_(np.isnan(distfn.ppf([-1, 2], *args)).all())
def check_named_args(distfn, x, shape_args, defaults, meths):
## Check calling w/ named arguments.
# check consistency of shapes, numargs and _parse signature
signature = inspect.getargspec(distfn._parse_args)
npt.assert_(signature.varargs is None)
npt.assert_(signature.keywords is None)
npt.assert_(signature.defaults == defaults)
shape_argnames = signature.args[1:-len(defaults)] # self, a, b, loc=0, scale=1
if distfn.shapes:
shapes_ = distfn.shapes.replace(',', ' ').split()
else:
shapes_ = ''
npt.assert_(len(shapes_) == distfn.numargs)
npt.assert_(len(shapes_) == len(shape_argnames))
# check calling w/ named arguments
shape_args = list(shape_args)
vals = [meth(x, *shape_args) for meth in meths]
npt.assert_(np.all(np.isfinite(vals)))
names, a, k = shape_argnames[:], shape_args[:], {}
while names:
k.update({names.pop(): a.pop()})
v = [meth(x, *a, **k) for meth in meths]
npt.assert_array_equal(vals, v)
if not 'n' in k.keys():
# `n` is first parameter of moment(), so can't be used as named arg
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
npt.assert_equal(distfn.moment(1, *a, **k),
distfn.moment(1, *shape_args))
# unknown arguments should not go through:
k.update({'kaboom': 42})
npt.assert_raises(TypeError, distfn.cdf, x, **k)

@ -0,0 +1,238 @@
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import assert_array_almost_equal, run_module_suite
from scipy.stats import \
binned_statistic, binned_statistic_2d, binned_statistic_dd
class TestBinnedStatistic(object):
@classmethod
def setup_class(cls):
np.random.seed(9865)
cls.x = np.random.random(100)
cls.y = np.random.random(100)
cls.v = np.random.random(100)
cls.X = np.random.random((100, 3))
def test_1d_count(self):
x = self.x
v = self.v
count1, edges1, bc = binned_statistic(x, v, 'count', bins=10)
count2, edges2 = np.histogram(x, bins=10)
assert_array_almost_equal(count1, count2)
assert_array_almost_equal(edges1, edges2)
def test_1d_sum(self):
x = self.x
v = self.v
sum1, edges1, bc = binned_statistic(x, v, 'sum', bins=10)
sum2, edges2 = np.histogram(x, bins=10, weights=v)
assert_array_almost_equal(sum1, sum2)
assert_array_almost_equal(edges1, edges2)
def test_1d_mean(self):
x = self.x
v = self.v
stat1, edges1, bc = binned_statistic(x, v, 'mean', bins=10)
stat2, edges2, bc = binned_statistic(x, v, np.mean, bins=10)
assert_array_almost_equal(stat1, stat2)
assert_array_almost_equal(edges1, edges2)
def test_1d_std(self):
x = self.x
v = self.v
stat1, edges1, bc = binned_statistic(x, v, 'std', bins=10)
stat2, edges2, bc = binned_statistic(x, v, np.std, bins=10)
assert_array_almost_equal(stat1, stat2)
assert_array_almost_equal(edges1, edges2)
def test_1d_median(self):
x = self.x
v = self.v
stat1, edges1, bc = binned_statistic(x, v, 'median', bins=10)
stat2, edges2, bc = binned_statistic(x, v, np.median, bins=10)
assert_array_almost_equal(stat1, stat2)
assert_array_almost_equal(edges1, edges2)
def test_1d_bincode(self):
x = self.x[:20]
v = self.v[:20]
count1, edges1, bc = binned_statistic(x, v, 'count', bins=3)
bc2 = np.array([3, 2, 1, 3, 2, 3, 3, 3, 3, 1, 1, 3, 3, 1, 2, 3, 1,
1, 2, 1])
bcount = [(bc == i).sum() for i in np.unique(bc)]
assert_array_almost_equal(bc, bc2)
assert_array_almost_equal(bcount, count1)
def test_1d_range_keyword(self):
# Regression test for gh-3063, range can be (min, max) or [(min, max)]
np.random.seed(9865)
x = np.arange(30)
data = np.random.random(30)
mean, bins, _ = binned_statistic(x[:15], data[:15])
mean_range, bins_range, _ = binned_statistic(x, data, range=[(0, 14)])
mean_range2, bins_range2, _ = binned_statistic(x, data, range=(0, 14))
assert_array_almost_equal(mean, mean_range)
assert_array_almost_equal(bins, bins_range)
assert_array_almost_equal(mean, mean_range2)
assert_array_almost_equal(bins, bins_range2)
def test_2d_count(self):
x = self.x
y = self.y
v = self.v
count1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'count', bins=5)
count2, binx2, biny2 = np.histogram2d(x, y, bins=5)
assert_array_almost_equal(count1, count2)
assert_array_almost_equal(binx1, binx2)
assert_array_almost_equal(biny1, biny2)
def test_2d_sum(self):
x = self.x
y = self.y
v = self.v
sum1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'sum', bins=5)
sum2, binx2, biny2 = np.histogram2d(x, y, bins=5, weights=v)
assert_array_almost_equal(sum1, sum2)
assert_array_almost_equal(binx1, binx2)
assert_array_almost_equal(biny1, biny2)
def test_2d_mean(self):
x = self.x
y = self.y
v = self.v
stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'mean', bins=5)
stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.mean, bins=5)
assert_array_almost_equal(stat1, stat2)
assert_array_almost_equal(binx1, binx2)
assert_array_almost_equal(biny1, biny2)
def test_2d_std(self):
x = self.x
y = self.y
v = self.v
stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'std', bins=5)
stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.std, bins=5)
assert_array_almost_equal(stat1, stat2)
assert_array_almost_equal(binx1, binx2)
assert_array_almost_equal(biny1, biny2)
def test_2d_median(self):
x = self.x
y = self.y
v = self.v
stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'median', bins=5)
stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.median, bins=5)
assert_array_almost_equal(stat1, stat2)
assert_array_almost_equal(binx1, binx2)
assert_array_almost_equal(biny1, biny2)
def test_2d_bincode(self):
x = self.x[:20]
y = self.y[:20]
v = self.v[:20]
count1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'count', bins=3)
bc2 = np.array([17, 11, 6, 16, 11, 17, 18, 17, 17, 7, 6, 18, 16,
6, 11, 16, 6, 6, 11, 8])
bcount = [(bc == i).sum() for i in np.unique(bc)]
assert_array_almost_equal(bc, bc2)
count1adj = count1[count1.nonzero()]
assert_array_almost_equal(bcount, count1adj)
def test_dd_count(self):
X = self.X
v = self.v
count1, edges1, bc = binned_statistic_dd(X, v, 'count', bins=3)
count2, edges2 = np.histogramdd(X, bins=3)
assert_array_almost_equal(count1, count2)
assert_array_almost_equal(edges1, edges2)
def test_dd_sum(self):
X = self.X
v = self.v
sum1, edges1, bc = binned_statistic_dd(X, v, 'sum', bins=3)
sum2, edges2 = np.histogramdd(X, bins=3, weights=v)
assert_array_almost_equal(sum1, sum2)
assert_array_almost_equal(edges1, edges2)
def test_dd_mean(self):
X = self.X
v = self.v
stat1, edges1, bc = binned_statistic_dd(X, v, 'mean', bins=3)
stat2, edges2, bc = binned_statistic_dd(X, v, np.mean, bins=3)
assert_array_almost_equal(stat1, stat2)
assert_array_almost_equal(edges1, edges2)
def test_dd_std(self):
X = self.X
v = self.v
stat1, edges1, bc = binned_statistic_dd(X, v, 'std', bins=3)
stat2, edges2, bc = binned_statistic_dd(X, v, np.std, bins=3)
assert_array_almost_equal(stat1, stat2)
assert_array_almost_equal(edges1, edges2)
def test_dd_median(self):
X = self.X
v = self.v
stat1, edges1, bc = binned_statistic_dd(X, v, 'median', bins=3)
stat2, edges2, bc = binned_statistic_dd(X, v, np.median, bins=3)
assert_array_almost_equal(stat1, stat2)
assert_array_almost_equal(edges1, edges2)
def test_dd_bincode(self):
X = self.X[:20]
v = self.v[:20]
count1, edges1, bc = binned_statistic_dd(X, v, 'count', bins=3)
bc2 = np.array([63, 33, 86, 83, 88, 67, 57, 33, 42, 41, 82, 83, 92,
32, 36, 91, 43, 87, 81, 81])
bcount = [(bc == i).sum() for i in np.unique(bc)]
assert_array_almost_equal(bc, bc2)
count1adj = count1[count1.nonzero()]
assert_array_almost_equal(bcount, count1adj)
if __name__ == "__main__":
run_module_suite()

@ -0,0 +1,202 @@
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import (run_module_suite, assert_equal, assert_array_equal,
assert_array_almost_equal, assert_approx_equal, assert_raises,
assert_allclose)
from scipy.special import xlogy
from scipy.stats.contingency import margins, expected_freq, chi2_contingency
def test_margins():
a = np.array([1])
m = margins(a)
assert_equal(len(m), 1)
m0 = m[0]
assert_array_equal(m0, np.array([1]))
a = np.array([[1]])
m0, m1 = margins(a)
expected0 = np.array([[1]])
expected1 = np.array([[1]])
assert_array_equal(m0, expected0)
assert_array_equal(m1, expected1)
a = np.arange(12).reshape(2, 6)
m0, m1 = margins(a)
expected0 = np.array([[15], [51]])
expected1 = np.array([[6, 8, 10, 12, 14, 16]])
assert_array_equal(m0, expected0)
assert_array_equal(m1, expected1)
a = np.arange(24).reshape(2, 3, 4)
m0, m1, m2 = margins(a)
expected0 = np.array([[[66]], [[210]]])
expected1 = np.array([[[60], [92], [124]]])
expected2 = np.array([[[60, 66, 72, 78]]])
assert_array_equal(m0, expected0)
assert_array_equal(m1, expected1)
assert_array_equal(m2, expected2)
def test_expected_freq():
assert_array_equal(expected_freq([1]), np.array([1.0]))
observed = np.array([[[2, 0], [0, 2]], [[0, 2], [2, 0]], [[1, 1], [1, 1]]])
e = expected_freq(observed)
assert_array_equal(e, np.ones_like(observed))
observed = np.array([[10, 10, 20], [20, 20, 20]])
e = expected_freq(observed)
correct = np.array([[12., 12., 16.], [18., 18., 24.]])
assert_array_almost_equal(e, correct)
def test_chi2_contingency_trivial():
# Some very simple tests for chi2_contingency.
# A trivial case
obs = np.array([[1, 2], [1, 2]])
chi2, p, dof, expected = chi2_contingency(obs, correction=False)
assert_equal(chi2, 0.0)
assert_equal(p, 1.0)
assert_equal(dof, 1)
assert_array_equal(obs, expected)
# A *really* trivial case: 1-D data.
obs = np.array([1, 2, 3])
chi2, p, dof, expected = chi2_contingency(obs, correction=False)
assert_equal(chi2, 0.0)
assert_equal(p, 1.0)
assert_equal(dof, 0)
assert_array_equal(obs, expected)
def test_chi2_contingency_R():
# Some test cases that were computed independently, using R.
Rcode = \
"""
# Data vector.
data <- c(
12, 34, 23, 4, 47, 11,
35, 31, 11, 34, 10, 18,
12, 32, 9, 18, 13, 19,
12, 12, 14, 9, 33, 25
)
# Create factor tags:r=rows, c=columns, t=tiers
r <- factor(gl(4, 2*3, 2*3*4, labels=c("r1", "r2", "r3", "r4")))
c <- factor(gl(3, 1, 2*3*4, labels=c("c1", "c2", "c3")))
t <- factor(gl(2, 3, 2*3*4, labels=c("t1", "t2")))
# 3-way Chi squared test of independence
s = summary(xtabs(data~r+c+t))
print(s)
"""
Routput = \
"""
Call: xtabs(formula = data ~ r + c + t)
Number of cases in table: 478
Number of factors: 3
Test for independence of all factors:
Chisq = 102.17, df = 17, p-value = 3.514e-14
"""
obs = np.array(
[[[12, 34, 23],
[35, 31, 11],
[12, 32, 9],
[12, 12, 14]],
[[4, 47, 11],
[34, 10, 18],
[18, 13, 19],
[9, 33, 25]]])
chi2, p, dof, expected = chi2_contingency(obs)
assert_approx_equal(chi2, 102.17, significant=5)
assert_approx_equal(p, 3.514e-14, significant=4)
assert_equal(dof, 17)
Rcode = \
"""
# Data vector.
data <- c(
#
12, 17,
11, 16,
#
11, 12,
15, 16,
#
23, 15,
30, 22,
#
14, 17,
15, 16
)
# Create factor tags:r=rows, c=columns, d=depths(?), t=tiers
r <- factor(gl(2, 2, 2*2*2*2, labels=c("r1", "r2")))
c <- factor(gl(2, 1, 2*2*2*2, labels=c("c1", "c2")))
d <- factor(gl(2, 4, 2*2*2*2, labels=c("d1", "d2")))
t <- factor(gl(2, 8, 2*2*2*2, labels=c("t1", "t2")))
# 4-way Chi squared test of independence
s = summary(xtabs(data~r+c+d+t))
print(s)
"""
Routput = \
"""
Call: xtabs(formula = data ~ r + c + d + t)
Number of cases in table: 262
Number of factors: 4
Test for independence of all factors:
Chisq = 8.758, df = 11, p-value = 0.6442
"""
obs = np.array(
[[[[12, 17],
[11, 16]],
[[11, 12],
[15, 16]]],
[[[23, 15],
[30, 22]],
[[14, 17],
[15, 16]]]])
chi2, p, dof, expected = chi2_contingency(obs)
assert_approx_equal(chi2, 8.758, significant=4)
assert_approx_equal(p, 0.6442, significant=4)
assert_equal(dof, 11)
def test_chi2_contingency_g():
c = np.array([[15, 60], [15, 90]])
g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood', correction=False)
assert_allclose(g, 2*xlogy(c, c/e).sum())
g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood', correction=True)
c_corr = c + np.array([[-0.5, 0.5], [0.5, -0.5]])
assert_allclose(g, 2*xlogy(c_corr, c_corr/e).sum())
c = np.array([[10, 12, 10], [12, 10, 10]])
g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood')
assert_allclose(g, 2*xlogy(c, c/e).sum())
def test_chi2_contingency_bad_args():
# Test that "bad" inputs raise a ValueError.
# Negative value in the array of observed frequencies.
obs = np.array([[-1, 10], [1, 2]])
assert_raises(ValueError, chi2_contingency, obs)
# The zeros in this will result in zeros in the array
# of expected frequencies.
obs = np.array([[0, 1], [0, 1]])
assert_raises(ValueError, chi2_contingency, obs)
# A degenerate case: `observed` has size 0.
obs = np.empty((0, 8))
assert_raises(ValueError, chi2_contingency, obs)
if __name__ == "__main__":
run_module_suite()

@ -2,11 +2,15 @@ from __future__ import division, print_function, absolute_import
import warnings
import numpy.testing as npt
import numpy as np
import nose
import numpy.testing as npt
from wafo import stats
from scipy import integrate
from scipy import stats
from common_tests import (check_normalization, check_moment, check_mean_expect,
check_var_expect, check_skew_expect, check_kurt_expect,
check_entropy, check_private_entropy, NUMPY_BELOW_1_7,
check_edge_support, check_named_args)
"""
Test all continuous distributions.
@ -17,39 +21,30 @@ distributions so that we can perform further testing of class methods.
These tests currently check only/mostly for serious errors and exceptions,
not for numerically exact results.
TODO:
* make functioning test for skew and kurtosis
still known failures - skip for now
"""
#currently not used
DECIMAL = 5 # specify the precision of the tests # increased from 0 to 5
DECIMAL_kurt = 0
DECIMAL = 5 # specify the precision of the tests # increased from 0 to 5
distcont = [
['alpha', (3.5704770516650459,)],
['anglit', ()],
['arcsine', ()],
['beta', (2.3098496451481823, 0.62687954300963677)],
['betaprime', (5, 6)], # avoid unbound error in entropy with (100, 86)],
['betaprime', (5, 6)],
['bradford', (0.29891359763170633,)],
['burr', (10.5, 4.3)], #incorrect mean and var for(0.94839838075366045, 4.3820284068855795)],
['burr', (10.5, 4.3)],
['cauchy', ()],
['chi', (78,)],
['chi2', (55,)],
['cosine', ()],
['dgamma', (1.1023326088288166,)],
['dweibull', (2.0685080649914673,)],
['erlang', (20,)], #correction numargs = 1
['erlang', (10,)],
['expon', ()],
['exponpow', (2.697119160358469,)],
['exponweib', (2.8923945291034436, 1.9505288745913174)],
['f', (29, 18)],
['fatiguelife', (29,)], #correction numargs = 1
['fatiguelife', (29,)], # correction numargs = 1
['fisk', (3.0857548622253179,)],
['foldcauchy', (4.7164673455831894,)],
['foldnorm', (1.9521253373555869,)],
@ -57,9 +52,9 @@ distcont = [
['frechet_r', (1.8928171603534227,)],
['gamma', (1.9932305483800778,)],
['gausshyper', (13.763771604130699, 3.1189636648681431,
2.5145980350183019, 5.1811649903971615)], #veryslow
2.5145980350183019, 5.1811649903971615)], # veryslow
['genexpon', (9.1325976465418908, 16.231956600590632, 3.2819552690843983)],
['genextreme', (-0.1,)], # sample mean test fails for (3.3184017469423535,)],
['genextreme', (-0.1,)],
['gengamma', (4.4162385429431925, 3.1193091679242761)],
['genhalflogistic', (0.77274727809929322,)],
['genlogistic', (0.41192440799679475,)],
@ -72,12 +67,12 @@ distcont = [
['halflogistic', ()],
['halfnorm', ()],
['hypsecant', ()],
['invgamma', (2.0668996136993067,)],
['invgamma', (4.0668996136993067,)],
['invgauss', (0.14546264555347513,)],
['invweibull', (10.58,)], # sample mean test fails at(0.58847112119264788,)]
['invweibull', (10.58,)],
['johnsonsb', (4.3172675099141058, 3.1837781130785063)],
['johnsonsu', (2.554395574161155, 2.2482281679651965)],
['ksone', (1000,)], #replace 22 by 100 to avoid failing range, ticket 956
['ksone', (1000,)], # replace 22 by 100 to avoid failing range, ticket 956
['kstwobign', ()],
['laplace', ()],
['levy', ()],
@ -91,8 +86,7 @@ distcont = [
['lognorm', (0.95368226960575331,)],
['lomax', (1.8771398388773268,)],
['maxwell', ()],
['mielke', (10.4, 3.6)], # sample mean test fails for (4.6420495492121487, 0.59707419545516938)],
# mielke: good results if 2nd parameter >2, weird mean or var below
['mielke', (10.4, 3.6)],
['nakagami', (4.9673794866666237,)],
['ncf', (27, 27, 0.41578441799226107)],
['nct', (14, 0.24045031331198066)],
@ -105,8 +99,6 @@ distcont = [
['powernorm', (4.4453652254590779,)],
['rayleigh', ()],
['rdist', (0.9,)], # feels also slow
# ['rdist', (3.8266985793976525,)], #veryslow, especially rvs
#['rdist', (541.0,)], # from ticket #758 #veryslow
['recipinvgauss', (0.63004267809369119,)],
['reciprocal', (0.0062309367010521255, 1.0062309367010522)],
['rice', (0.7749725210111873,)],
@ -115,22 +107,36 @@ distcont = [
['triang', (0.15785029824528218,)],
['truncexpon', (4.6907725456810478,)],
['truncnorm', (-1.0978730080013919, 2.7306754109031979)],
['truncnorm', (0.1, 2.)],
['tukeylambda', (3.1321477856738267,)],
['uniform', ()],
['vonmises', (3.9939042581071398,)],
['vonmises_line', (3.9939042581071398,)],
['wald', ()],
['weibull_max', (2.8687961709100187,)],
['weibull_min', (1.7866166930421596,)],
['wrapcauchy', (0.031071279018614728,)]]
## Last four of these fail all around. Need to be checked
distcont_extra = [
['betaprime', (100, 86)],
['fatiguelife', (5,)],
['mielke', (4.6420495492121487, 0.59707419545516938)],
['invweibull', (0.58847112119264788,)],
# burr: sample mean test fails still for c<1
['burr', (0.94839838075366045, 4.3820284068855795)],
# genextreme: sample mean test, sf-logsf test fail
['genextreme', (3.3184017469423535,)],
]
# for testing only specific functions
##distcont = [
## ['erlang', (20,)], #correction numargs = 1
# distcont = [
## ['fatiguelife', (29,)], #correction numargs = 1
## ['loggamma', (0.41411931826052117,)]]
# for testing ticket:767
##distcont = [
# distcont = [
## ['genextreme', (3.3184017469423535,)],
## ['genextreme', (0.01,)],
## ['genextreme', (0.00001,)],
@ -138,12 +144,12 @@ distcont = [
## ['genextreme', (-0.01,)]
## ]
##distcont = [['gumbel_l', ()],
# distcont = [['gumbel_l', ()],
## ['gumbel_r', ()],
## ['norm', ()]
## ]
##distcont = [['norm', ()]]
# distcont = [['norm', ()]]
distmissing = ['wald', 'gausshyper', 'genexpon', 'rv_continuous',
'loglaplace', 'rdist', 'semicircular', 'invweibull', 'ksone',
@ -154,11 +160,14 @@ distmissing = ['wald', 'gausshyper', 'genexpon', 'rv_continuous',
distmiss = [[dist,args] for dist,args in distcont if dist in distmissing]
distslow = ['rdist', 'gausshyper', 'recipinvgauss', 'ksone', 'genexpon',
'vonmises', 'rice', 'mielke', 'semicircular', 'cosine', 'invweibull',
'powerlognorm', 'johnsonsu', 'kstwobign']
#distslow are sorted by speed (very slow to slow)
'vonmises', 'vonmises_line', 'mielke', 'semicircular',
'cosine', 'invweibull', 'powerlognorm', 'johnsonsu', 'kstwobign']
# distslow are sorted by speed (very slow to slow)
# NB: not needed anymore?
def _silence_fp_errors(func):
# warning: don't apply to test_ functions as is, then those will be skipped
def wrap(*a, **kw):
olderr = np.seterr(all='ignore')
try:
@ -168,162 +177,183 @@ def _silence_fp_errors(func):
wrap.__name__ = func.__name__
return wrap
@_silence_fp_errors
def test_cont_basic():
# this test skips slow distributions
for distname, arg in distcont[:]:
if distname in distslow:
continue
distfn = getattr(stats, distname)
np.random.seed(765456)
sn = 1000
rvs = distfn.rvs(size=sn,*arg)
sm = rvs.mean()
sv = rvs.var()
skurt = stats.kurtosis(rvs)
sskew = stats.skew(rvs)
m,v = distfn.stats(*arg)
yield check_sample_meanvar_, distfn, arg, m, v, sm, sv, sn, distname + \
'sample mean test'
# the sample skew kurtosis test has known failures, not very good distance measure
#yield check_sample_skew_kurt, distfn, arg, sskew, skurt, distname
yield check_moment, distfn, arg, m, v, distname
yield check_cdf_ppf, distfn, arg, distname
yield check_sf_isf, distfn, arg, distname
yield check_pdf, distfn, arg, distname
if distname in ['wald']:
continue
yield check_pdf_logpdf, distfn, arg, distname
yield check_cdf_logcdf, distfn, arg, distname
yield check_sf_logsf, distfn, arg, distname
if distname in distmissing:
alpha = 0.01
yield check_distribution_rvs, distname, arg, alpha, rvs
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=integrate.IntegrationWarning)
for distname, arg in distcont[:]:
if distname in distslow:
continue
distfn = getattr(stats, distname)
np.random.seed(765456)
sn = 500
rvs = distfn.rvs(size=sn, *arg)
sm = rvs.mean()
sv = rvs.var()
m, v = distfn.stats(*arg)
yield check_sample_meanvar_, distfn, arg, m, v, sm, sv, sn, \
distname + 'sample mean test'
yield check_cdf_ppf, distfn, arg, distname
yield check_sf_isf, distfn, arg, distname
yield check_pdf, distfn, arg, distname
yield check_pdf_logpdf, distfn, arg, distname
yield check_cdf_logcdf, distfn, arg, distname
yield check_sf_logsf, distfn, arg, distname
if distname in distmissing:
alpha = 0.01
yield check_distribution_rvs, distname, arg, alpha, rvs
locscale_defaults = (0, 1)
meths = [distfn.pdf, distfn.logpdf, distfn.cdf, distfn.logcdf,
distfn.logsf]
# make sure arguments are within support
spec_x = {'frechet_l': -0.5, 'weibull_max': -0.5, 'levy_l': -0.5,
'pareto': 1.5, 'tukeylambda': 0.3}
x = spec_x.get(distname, 0.5)
yield check_named_args, distfn, x, arg, locscale_defaults, meths
# Entropy
skp = npt.dec.skipif
yield check_entropy, distfn, arg, distname
if distfn.numargs == 0:
yield skp(NUMPY_BELOW_1_7)(check_vecentropy), distfn, arg
if distfn.__class__._entropy != stats.rv_continuous._entropy:
yield check_private_entropy, distfn, arg, stats.rv_continuous
yield check_edge_support, distfn, arg
knf = npt.dec.knownfailureif
yield knf(distname == 'truncnorm')(check_ppf_private), distfn, \
arg, distname
@npt.dec.slow
def test_cont_basic_slow():
# same as above for slow distributions
for distname, arg in distcont[:]:
if distname not in distslow: continue
distfn = getattr(stats, distname)
np.random.seed(765456)
sn = 1000
rvs = distfn.rvs(size=sn,*arg)
sm = rvs.mean()
sv = rvs.var()
skurt = stats.kurtosis(rvs)
sskew = stats.skew(rvs)
m,v = distfn.stats(*arg)
yield check_sample_meanvar_, distfn, arg, m, v, sm, sv, sn, distname + \
'sample mean test'
# the sample skew kurtosis test has known failures, not very good distance measure
#yield check_sample_skew_kurt, distfn, arg, sskew, skurt, distname
yield check_moment, distfn, arg, m, v, distname
yield check_cdf_ppf, distfn, arg, distname
yield check_sf_isf, distfn, arg, distname
yield check_pdf, distfn, arg, distname
yield check_pdf_logpdf, distfn, arg, distname
yield check_cdf_logcdf, distfn, arg, distname
yield check_sf_logsf, distfn, arg, distname
#yield check_oth, distfn, arg # is still missing
if distname in distmissing:
alpha = 0.01
yield check_distribution_rvs, distname, arg, alpha, rvs
@_silence_fp_errors
def check_moment(distfn, arg, m, v, msg):
m1 = distfn.moment(1,*arg)
m2 = distfn.moment(2,*arg)
if not np.isinf(m):
npt.assert_almost_equal(m1, m, decimal=10, err_msg= msg + \
' - 1st moment')
else: # or np.isnan(m1),
npt.assert_(np.isinf(m1),
msg + ' - 1st moment -infinite, m1=%s' % str(m1))
#np.isnan(m1) temporary special treatment for loggamma
if not np.isinf(v):
npt.assert_almost_equal(m2-m1*m1, v, decimal=10, err_msg= msg + \
' - 2ndt moment')
else: #or np.isnan(m2),
npt.assert_(np.isinf(m2),
msg + ' - 2nd moment -infinite, m2=%s' % str(m2))
#np.isnan(m2) temporary special treatment for loggamma
@_silence_fp_errors
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=integrate.IntegrationWarning)
for distname, arg in distcont[:]:
if distname not in distslow:
continue
distfn = getattr(stats, distname)
np.random.seed(765456)
sn = 500
rvs = distfn.rvs(size=sn,*arg)
sm = rvs.mean()
sv = rvs.var()
m, v = distfn.stats(*arg)
yield check_sample_meanvar_, distfn, arg, m, v, sm, sv, sn, \
distname + 'sample mean test'
yield check_cdf_ppf, distfn, arg, distname
yield check_sf_isf, distfn, arg, distname
yield check_pdf, distfn, arg, distname
yield check_pdf_logpdf, distfn, arg, distname
yield check_cdf_logcdf, distfn, arg, distname
yield check_sf_logsf, distfn, arg, distname
# yield check_oth, distfn, arg # is still missing
if distname in distmissing:
alpha = 0.01
yield check_distribution_rvs, distname, arg, alpha, rvs
locscale_defaults = (0, 1)
meths = [distfn.pdf, distfn.logpdf, distfn.cdf, distfn.logcdf,
distfn.logsf]
# make sure arguments are within support
x = 0.5
if distname == 'invweibull':
arg = (1,)
elif distname == 'ksone':
arg = (3,)
yield check_named_args, distfn, x, arg, locscale_defaults, meths
# Entropy
skp = npt.dec.skipif
ks_cond = distname in ['ksone', 'kstwobign']
yield skp(ks_cond)(check_entropy), distfn, arg, distname
if distfn.numargs == 0:
yield skp(NUMPY_BELOW_1_7)(check_vecentropy), distfn, arg
if distfn.__class__._entropy != stats.rv_continuous._entropy:
yield check_private_entropy, distfn, arg, stats.rv_continuous
yield check_edge_support, distfn, arg
@npt.dec.slow
def test_moments():
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=integrate.IntegrationWarning)
knf = npt.dec.knownfailureif
fail_normalization = set(['vonmises', 'ksone'])
fail_higher = set(['vonmises', 'ksone', 'ncf'])
for distname, arg in distcont[:]:
distfn = getattr(stats, distname)
m, v, s, k = distfn.stats(*arg, moments='mvsk')
cond1, cond2 = distname in fail_normalization, distname in fail_higher
msg = distname + ' fails moments'
yield knf(cond1, msg)(check_normalization), distfn, arg, distname
yield knf(cond2, msg)(check_mean_expect), distfn, arg, m, distname
yield knf(cond2, msg)(check_var_expect), distfn, arg, m, v, distname
yield knf(cond2, msg)(check_skew_expect), distfn, arg, m, v, s, \
distname
yield knf(cond2, msg)(check_kurt_expect), distfn, arg, m, v, k, \
distname
yield check_loc_scale, distfn, arg, m, v, distname
yield check_moment, distfn, arg, m, v, distname
def check_sample_meanvar_(distfn, arg, m, v, sm, sv, sn, msg):
#this did not work, skipped silently by nose
#check_sample_meanvar, sm, m, msg + 'sample mean test'
#check_sample_meanvar, sv, v, msg + 'sample var test'
# this did not work, skipped silently by nose
if not np.isinf(m):
check_sample_mean(sm, sv, sn, m)
if not np.isinf(v):
check_sample_var(sv, sn, v)
## check_sample_meanvar( sm, m, msg + 'sample mean test')
## check_sample_meanvar( sv, v, msg + 'sample var test')
def check_sample_mean(sm,v,n, popmean):
"""
from stats.stats.ttest_1samp(a, popmean):
Calculates the t-obtained for the independent samples T-test on ONE group
of scores a, given a population mean.
Returns: t-value, two-tailed prob
"""
## a = asarray(a)
## x = np.mean(a)
## v = np.var(a, ddof=1)
## n = len(a)
def check_sample_mean(sm,v,n, popmean):
# from stats.stats.ttest_1samp(a, popmean):
# Calculates the t-obtained for the independent samples T-test on ONE group
# of scores a, given a population mean.
#
# Returns: t-value, two-tailed prob
df = n-1
svar = ((n-1)*v) / float(df) #looks redundant
t = (sm-popmean)/np.sqrt(svar*(1.0/n))
prob = stats.betai(0.5*df,0.5,df/(df+t*t))
svar = ((n-1)*v) / float(df) # looks redundant
t = (sm-popmean) / np.sqrt(svar*(1.0/n))
prob = stats.betai(0.5*df, 0.5, df/(df+t*t))
# return t,prob
npt.assert_(prob > 0.01, 'mean fail, t,prob = %f, %f, m, sm=%f,%f' %
(t, prob, popmean, sm))
#return t,prob
npt.assert_(prob > 0.01, 'mean fail, t,prob = %f, %f, m,sm=%f,%f' % (t,prob,popmean,sm))
def check_sample_var(sv,n, popvar):
'''
two-sided chisquare test for sample variance equal to hypothesized variance
'''
# two-sided chisquare test for sample variance equal to hypothesized variance
df = n-1
chi2 = (n-1)*popvar/float(popvar)
pval = stats.chisqprob(chi2,df)*2
npt.assert_(pval > 0.01, 'var fail, t,pval = %f, %f, v,sv=%f,%f' % (chi2,pval,popvar,sv))
npt.assert_(pval > 0.01, 'var fail, t, pval = %f, %f, v, sv=%f, %f' %
(chi2,pval,popvar,sv))
def check_sample_skew_kurt(distfn, arg, ss, sk, msg):
skew,kurt = distfn.stats(moments='sk',*arg)
## skew = distfn.stats(moment='s',*arg)[()]
## kurt = distfn.stats(moment='k',*arg)[()]
check_sample_meanvar( sk, kurt, msg + 'sample kurtosis test')
check_sample_meanvar( ss, skew, msg + 'sample skew test')
def check_sample_meanvar(sm,m,msg):
if not np.isinf(m) and not np.isnan(m):
npt.assert_almost_equal(sm, m, decimal=DECIMAL, err_msg= msg + \
' - finite moment')
## else:
## npt.assert_(abs(sm) > 10000), msg='infinite moment, sm = ' + str(sm))
@_silence_fp_errors
def check_cdf_ppf(distfn,arg,msg):
values = [0.001, 0.5, 0.999]
npt.assert_almost_equal(distfn.cdf(distfn.ppf(values, *arg), *arg),
values, decimal=DECIMAL, err_msg= msg + \
values, decimal=DECIMAL, err_msg=msg +
' - cdf-ppf roundtrip')
@_silence_fp_errors
def check_sf_isf(distfn,arg,msg):
npt.assert_almost_equal(distfn.sf(distfn.isf([0.1,0.5,0.9], *arg), *arg),
[0.1,0.5,0.9], decimal=DECIMAL, err_msg= msg + \
[0.1,0.5,0.9], decimal=DECIMAL, err_msg=msg +
' - sf-isf roundtrip')
npt.assert_almost_equal(distfn.cdf([0.1,0.9], *arg),
1.0-distfn.sf([0.1,0.9], *arg),
decimal=DECIMAL, err_msg= msg + \
decimal=DECIMAL, err_msg=msg +
' - cdf-sf relationship')
@_silence_fp_errors
def check_pdf(distfn, arg, msg):
# compares pdf at median with numerical derivative of cdf
median = distfn.ppf(0.5, *arg)
@ -335,12 +365,12 @@ def check_pdf(distfn, arg, msg):
pdfv = distfn.pdf(median, *arg)
cdfdiff = (distfn.cdf(median + eps, *arg) -
distfn.cdf(median - eps, *arg))/eps/2.0
#replace with better diff and better test (more points),
#actually, this works pretty well
# replace with better diff and better test (more points),
# actually, this works pretty well
npt.assert_almost_equal(pdfv, cdfdiff,
decimal=DECIMAL, err_msg= msg + ' - cdf-pdf relationship')
decimal=DECIMAL, err_msg=msg + ' - cdf-pdf relationship')
@_silence_fp_errors
def check_pdf_logpdf(distfn, args, msg):
# compares pdf at several points with the log of the pdf
points = np.array([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
@ -351,7 +381,7 @@ def check_pdf_logpdf(distfn, args, msg):
logpdf = logpdf[np.isfinite(logpdf)]
npt.assert_almost_equal(np.log(pdf), logpdf, decimal=7, err_msg=msg + " - logpdf-log(pdf) relationship")
@_silence_fp_errors
def check_sf_logsf(distfn, args, msg):
# compares sf at several points with the log of the sf
points = np.array([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
@ -362,7 +392,7 @@ def check_sf_logsf(distfn, args, msg):
logsf = logsf[np.isfinite(logsf)]
npt.assert_almost_equal(np.log(sf), logsf, decimal=7, err_msg=msg + " - logsf-log(sf) relationship")
@_silence_fp_errors
def check_cdf_logcdf(distfn, args, msg):
# compares cdf at several points with the log of the cdf
points = np.array([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
@ -374,10 +404,9 @@ def check_cdf_logcdf(distfn, args, msg):
npt.assert_almost_equal(np.log(cdf), logcdf, decimal=7, err_msg=msg + " - logcdf-log(cdf) relationship")
@_silence_fp_errors
def check_distribution_rvs(dist, args, alpha, rvs):
#test from scipy.stats.tests
#this version reuses existing random variables
# test from scipy.stats.tests
# this version reuses existing random variables
D,pval = stats.kstest(rvs, dist, args=args, N=1000)
if (pval < alpha):
D,pval = stats.kstest(dist,'',args=args, N=1000)
@ -385,6 +414,22 @@ def check_distribution_rvs(dist, args, alpha, rvs):
"; alpha = " + str(alpha) + "\nargs = " + str(args))
def check_vecentropy(distfn, args):
npt.assert_equal(distfn.vecentropy(*args), distfn._entropy(*args))
@npt.dec.skipif(NUMPY_BELOW_1_7)
def check_loc_scale(distfn, arg, m, v, msg):
loc, scale = 10.0, 10.0
mt, vt = distfn.stats(loc=loc, scale=scale, *arg)
npt.assert_allclose(m*scale + loc, mt)
npt.assert_allclose(v*scale*scale, vt)
def check_ppf_private(distfn, arg, msg):
#fails by design for truncnorm self.nb not defined
ppfs = distfn._ppf(np.array([0.1, 0.5, 0.9]), *arg)
npt.assert_(not np.any(np.isnan(ppfs)), msg + 'ppf private is nan')
if __name__ == "__main__":
#nose.run(argv=['', __file__])
nose.runmodule(argv=[__file__,'-s'], exit=False)
npt.run_module_suite()

@ -1,207 +1,142 @@
from __future__ import division, print_function, absolute_import
import numpy.testing as npt
import numpy as np
import nose
from wafo import stats
DECIMAL_meanvar = 0#1 # was 0
try:
from scipy.lib.six import xrange
except:
pass
from scipy import stats
from .common_tests import (check_normalization, check_moment, check_mean_expect,
check_var_expect, check_skew_expect, check_kurt_expect,
check_entropy, check_private_entropy, check_edge_support,
check_named_args)
knf = npt.dec.knownfailureif
distdiscrete = [
['bernoulli',(0.3,)],
['binom', (5, 0.4)],
['binom', (5, 0.4)],
['boltzmann',(1.4, 19)],
['dlaplace', (0.8,)], #0.5
['geom', (0.5,)],
['dlaplace', (0.8,)], # 0.5
['geom', (0.5,)],
['hypergeom',(30, 12, 6)],
['hypergeom',(21,3,12)], #numpy.random (3,18,12) numpy ticket:921
['hypergeom',(21,18,11)], #numpy.random (18,3,11) numpy ticket:921
['logser', (0.6,)], # reenabled, numpy ticket:921
['nbinom', (5, 0.5)],
['nbinom', (0.4, 0.4)], #from tickets: 583
['planck', (0.51,)], #4.1
['poisson', (0.6,)],
['randint', (7, 31)],
['skellam', (15, 8)]]
# ['zipf', (4,)] ] # arg=4 is ok,
# Zipf broken for arg = 2, e.g. weird .stats
# looking closer, mean, var should be inf for arg=2
#@npt.dec.slow
['hypergeom',(21,3,12)], # numpy.random (3,18,12) numpy ticket:921
['hypergeom',(21,18,11)], # numpy.random (18,3,11) numpy ticket:921
['logser', (0.6,)], # reenabled, numpy ticket:921
['nbinom', (5, 0.5)],
['nbinom', (0.4, 0.4)], # from tickets: 583
['planck', (0.51,)], # 4.1
['poisson', (0.6,)],
['randint', (7, 31)],
['skellam', (15, 8)],
['zipf', (6.5,)]
]
def test_discrete_basic():
for distname, arg in distdiscrete:
distfn = getattr(stats,distname)
#assert stats.dlaplace.rvs(0.8) is not None
distfn = getattr(stats, distname)
np.random.seed(9765456)
rvs = distfn.rvs(size=2000,*arg)
rvs = distfn.rvs(size=2000, *arg)
supp = np.unique(rvs)
m,v = distfn.stats(*arg)
#yield npt.assert_almost_equal(rvs.mean(), m, decimal=4,err_msg='mean')
#yield npt.assert_almost_equal, rvs.mean(), m, 2, 'mean' # does not work
yield check_sample_meanvar, rvs.mean(), m, distname + ' sample mean test'
yield check_sample_meanvar, rvs.var(), v, distname + ' sample var test'
yield check_cdf_ppf, distfn, arg, distname + ' cdf_ppf'
yield check_cdf_ppf2, distfn, arg, supp, distname + ' cdf_ppf'
yield check_pmf_cdf, distfn, arg, distname + ' pmf_cdf'
# zipf doesn't fail, but generates floating point warnings.
# Should be checked.
if not distname in ['zipf']:
yield check_oth, distfn, arg, distname + ' oth'
skurt = stats.kurtosis(rvs)
sskew = stats.skew(rvs)
yield check_sample_skew_kurt, distfn, arg, skurt, sskew, \
distname + ' skew_kurt'
# dlaplace doesn't fail, but generates lots of floating point warnings.
# Should be checked.
if not distname in ['dlaplace']: #['logser']: #known failure, fixed
alpha = 0.01
yield check_discrete_chisquare, distfn, arg, rvs, alpha, \
distname + ' chisquare'
@npt.dec.slow
def test_discrete_extra():
m, v = distfn.stats(*arg)
yield check_cdf_ppf, distfn, arg, supp, distname + ' cdf_ppf'
yield check_pmf_cdf, distfn, arg, distname
yield check_oth, distfn, arg, supp, distname + ' oth'
yield check_edge_support, distfn, arg
alpha = 0.01
yield check_discrete_chisquare, distfn, arg, rvs, alpha, \
distname + ' chisquare'
seen = set()
for distname, arg in distdiscrete:
if distname in seen:
continue
seen.add(distname)
distfn = getattr(stats,distname)
yield check_ppf_limits, distfn, arg, distname + \
' ppf limit test'
yield check_isf_limits, distfn, arg, distname + \
' isf limit test'
yield check_entropy, distfn, arg, distname + \
' entropy nan test'
@npt.dec.skipif(True)
def test_discrete_private():
#testing private methods mostly for debugging
# some tests might fail by design,
# e.g. incorrect definition of distfn.a and distfn.b
locscale_defaults = (0,)
meths = [distfn.pmf, distfn.logpmf, distfn.cdf, distfn.logcdf,
distfn.logsf]
# make sure arguments are within support
spec_k = {'randint': 11, 'hypergeom': 4, 'bernoulli': 0, }
k = spec_k.get(distname, 1)
yield check_named_args, distfn, k, arg, locscale_defaults, meths
yield check_scale_docstring, distfn
# Entropy
yield check_entropy, distfn, arg, distname
if distfn.__class__._entropy != stats.rv_discrete._entropy:
yield check_private_entropy, distfn, arg, stats.rv_discrete
def test_moments():
for distname, arg in distdiscrete:
distfn = getattr(stats,distname)
rvs = distfn.rvs(size=10000,*arg)
m,v = distfn.stats(*arg)
yield check_ppf_ppf, distfn, arg
yield check_cdf_ppf_private, distfn, arg, distname
yield check_generic_moment, distfn, arg, m, 1, 3 # last is decimal
yield check_generic_moment, distfn, arg, v+m*m, 2, 3 # last is decimal
yield check_moment_frozen, distfn, arg, m, 1, 3 # last is decimal
yield check_moment_frozen, distfn, arg, v+m*m, 2, 3 # last is decimal
def check_sample_meanvar(sm,m,msg):
if not np.isinf(m):
npt.assert_almost_equal(sm, m, decimal=DECIMAL_meanvar, err_msg=msg + \
' - finite moment')
else:
npt.assert_(sm > 10000, msg='infinite moment, sm = ' + str(sm))
def check_sample_var(sm,m,msg):
npt.assert_almost_equal(sm, m, decimal=DECIMAL_meanvar, err_msg= msg + 'var')
def check_cdf_ppf(distfn,arg,msg):
ppf05 = distfn.ppf(0.5,*arg)
cdf05 = distfn.cdf(ppf05,*arg)
npt.assert_almost_equal(distfn.ppf(cdf05-1e-6,*arg),ppf05,
err_msg=msg + 'ppf-cdf-median')
npt.assert_((distfn.ppf(cdf05+1e-4,*arg)>ppf05), msg + 'ppf-cdf-next')
def check_cdf_ppf2(distfn,arg,supp,msg):
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp,*arg),*arg),
m, v, s, k = distfn.stats(*arg, moments='mvsk')
yield check_normalization, distfn, arg, distname
# compare `stats` and `moment` methods
yield check_moment, distfn, arg, m, v, distname
yield check_mean_expect, distfn, arg, m, distname
yield check_var_expect, distfn, arg, m, v, distname
yield check_skew_expect, distfn, arg, m, v, s, distname
cond = distname in ['zipf']
msg = distname + ' fails kurtosis'
yield knf(cond, msg)(check_kurt_expect), distfn, arg, m, v, k, distname
# frozen distr moments
yield check_moment_frozen, distfn, arg, m, 1
yield check_moment_frozen, distfn, arg, v+m*m, 2
def check_cdf_ppf(distfn, arg, supp, msg):
# cdf is a step function, and ppf(q) = min{k : cdf(k) >= q, k integer}
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp, *arg), *arg),
supp, msg + '-roundtrip')
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp,*arg)-1e-8,*arg),
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp, *arg) - 1e-8, *arg),
supp, msg + '-roundtrip')
supp1 = supp[supp < distfn.b]
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp1, *arg) + 1e-8, *arg),
supp1 + distfn.inc, msg + 'ppf-cdf-next')
# -1e-8 could cause an error if pmf < 1e-8
def check_cdf_ppf_private(distfn,arg,msg):
ppf05 = distfn._ppf(0.5,*arg)
cdf05 = distfn.cdf(ppf05,*arg)
npt.assert_almost_equal(distfn._ppf(cdf05-1e-6,*arg),ppf05,
err_msg=msg + '_ppf-cdf-median ')
npt.assert_((distfn._ppf(cdf05+1e-4,*arg)>ppf05), msg + '_ppf-cdf-next')
def check_ppf_ppf(distfn, arg):
npt.assert_(distfn.ppf(0.5,*arg) < np.inf)
ppfs = distfn.ppf([0.5,0.9],*arg)
ppf_s = [distfn._ppf(0.5,*arg), distfn._ppf(0.9,*arg)]
npt.assert_(np.all(ppfs < np.inf))
npt.assert_(ppf_s[0] == distfn.ppf(0.5,*arg))
npt.assert_(ppf_s[1] == distfn.ppf(0.9,*arg))
npt.assert_(ppf_s[0] == ppfs[0])
npt.assert_(ppf_s[1] == ppfs[1])
def check_pmf_cdf(distfn, arg, msg):
startind = np.int(distfn._ppf(0.01,*arg)-1)
index = range(startind,startind+10)
cdfs = distfn.cdf(index,*arg)
npt.assert_almost_equal(cdfs, distfn.pmf(index, *arg).cumsum() + \
cdfs[0] - distfn.pmf(index[0],*arg),
decimal=4, err_msg= msg + 'pmf-cdf')
def check_generic_moment(distfn, arg, m, k, decim):
npt.assert_almost_equal(distfn.generic_moment(k,*arg), m, decimal=decim,
err_msg= str(distfn) + ' generic moment test')
def check_moment_frozen(distfn, arg, m, k, decim):
npt.assert_almost_equal(distfn(*arg).moment(k), m, decimal=decim,
err_msg= str(distfn) + ' frozen moment test')
def check_oth(distfn, arg, msg):
#checking other methods of distfn
meanint = round(float(distfn.stats(*arg)[0])) # closest integer to mean
npt.assert_almost_equal(distfn.sf(meanint, *arg), 1 - \
distfn.cdf(meanint, *arg), decimal=8)
median_sf = distfn.isf(0.5, *arg)
def check_pmf_cdf(distfn, arg, distname):
startind = np.int(distfn.ppf(0.01, *arg) - 1)
index = list(range(startind, startind + 10))
cdfs, pmfs_cum = distfn.cdf(index,*arg), distfn.pmf(index, *arg).cumsum()
atol, rtol = 1e-10, 1e-10
if distname == 'skellam': # ncx2 accuracy
atol, rtol = 1e-5, 1e-5
npt.assert_allclose(cdfs - cdfs[0], pmfs_cum - pmfs_cum[0],
atol=atol, rtol=rtol)
def check_moment_frozen(distfn, arg, m, k):
npt.assert_allclose(distfn(*arg).moment(k), m,
atol=1e-10, rtol=1e-10)
def check_oth(distfn, arg, supp, msg):
# checking other methods of distfn
npt.assert_allclose(distfn.sf(supp, *arg), 1. - distfn.cdf(supp, *arg),
atol=1e-10, rtol=1e-10)
q = np.linspace(0.01, 0.99, 20)
npt.assert_allclose(distfn.isf(q, *arg), distfn.ppf(1. - q, *arg),
atol=1e-10, rtol=1e-10)
median_sf = distfn.isf(0.5, *arg)
npt.assert_(distfn.sf(median_sf - 1, *arg) > 0.5)
npt.assert_(distfn.cdf(median_sf + 1, *arg) > 0.5)
npt.assert_equal(distfn.isf(0.5, *arg), distfn.ppf(0.5, *arg))
#next 3 functions copied from test_continous_extra
# adjusted
def check_ppf_limits(distfn,arg,msg):
below,low,upp,above = distfn.ppf([-1,0,1,2], *arg)
#print distfn.name, distfn.a, low, distfn.b, upp
#print distfn.name,below,low,upp,above
assert_equal_inf_nan(distfn.a-1,low, msg + 'ppf lower bound')
assert_equal_inf_nan(distfn.b,upp, msg + 'ppf upper bound')
npt.assert_(np.isnan(below), msg + 'ppf out of bounds - below')
npt.assert_(np.isnan(above), msg + 'ppf out of bounds - above')
def check_isf_limits(distfn,arg,msg):
below,low,upp,above = distfn.isf([-1,0,1,2], *arg)
#print distfn.name, distfn.a, low, distfn.b, upp
#print distfn.name,below,low,upp,above
assert_equal_inf_nan(distfn.a-1,upp, msg + 'isf lower bound')
assert_equal_inf_nan(distfn.b,low, msg + 'isf upper bound')
npt.assert_(np.isnan(below), msg + 'isf out of bounds - below')
npt.assert_(np.isnan(above), msg + 'isf out of bounds - above')
def assert_equal_inf_nan(v1,v2,msg):
npt.assert_(not np.isnan(v1))
if not np.isinf(v1):
npt.assert_almost_equal(v1, v2, decimal=10, err_msg = msg + \
' - finite')
else:
npt.assert_(np.isinf(v2) or np.isnan(v2),
msg + ' - infinite, v2=%s' % str(v2))
def check_sample_skew_kurt(distfn, arg, sk, ss, msg):
k,s = distfn.stats(moment='ks',*arg)
check_sample_meanvar, sk, k, msg + 'sample skew test'
check_sample_meanvar, ss, s, msg + 'sample kurtosis test'
def check_entropy(distfn,arg,msg):
ent = distfn.entropy(*arg)
#print 'Entropy =', ent
npt.assert_(not np.isnan(ent), msg + 'test Entropy is nan')
def check_discrete_chisquare(distfn, arg, rvs, alpha, msg):
'''perform chisquare test for random sample of a discrete distribution
"""Perform chisquare test for random sample of a discrete distribution
Parameters
----------
@ -218,33 +153,27 @@ def check_discrete_chisquare(distfn, arg, rvs, alpha, msg):
0 if test passes, 1 if test fails
uses global variable debug for printing results
'''
# define parameters for test
## n=2000
"""
n = len(rvs)
nsupp = 20
wsupp = 1.0/nsupp
## distfn = getattr(stats, distname)
## np.random.seed(9765456)
## rvs = distfn.rvs(size=n,*arg)
# construct intervals with minimum mass 1/nsupp
# intervalls are left-half-open as in a cdf difference
# intervals are left-half-open as in a cdf difference
distsupport = xrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1)
last = 0
distsupp = [max(distfn.a, -1000)]
distmass = []
for ii in distsupport:
current = distfn.cdf(ii,*arg)
if current - last >= wsupp-1e-14:
if current - last >= wsupp-1e-14:
distsupp.append(ii)
distmass.append(current - last)
last = current
if current > (1-wsupp):
break
if distsupp[-1] < distfn.b:
if distsupp[-1] < distfn.b:
distsupp.append(distfn.b)
distmass.append(1-last)
distsupp = np.array(distsupp)
@ -263,6 +192,11 @@ def check_discrete_chisquare(distfn, arg, rvs, alpha, msg):
' at arg = %s with pval = %s' % (msg,str(arg),str(pval)))
def check_scale_docstring(distfn):
if distfn.__doc__ is not None:
# Docstrings can be stripped if interpreter is run with -OO
npt.assert_('scale' not in distfn.__doc__)
if __name__ == "__main__":
#nose.run(argv=['', __file__])
nose.runmodule(argv=[__file__,'-s'], exit=False)
npt.run_module_suite()

File diff suppressed because it is too large Load Diff

@ -1,98 +1,100 @@
# NOTE: contains only one test, _est_cont_fit, that is renamed so that
# nose doesn't run it
# I put this here for the record and for the case when someone wants to
# verify the quality of fit
# with current parameters: relatively small sample size, default starting values
# Ran 84 tests in 401.797s
# FAILED (failures=15)
#
#Ran 83 tests in 238.859s
#FAILED (failures=12)
from __future__ import division, print_function, absolute_import
import numpy.testing as npt
import os
import numpy as np
from numpy.testing import dec
from wafo import stats
from test_continuous_basic import distcont
from .test_continuous_basic import distcont
# this is not a proper statistical test for convergence, but only
# verifies that the estimate and true values don't differ by too much
n_repl1 = 1000 # sample size for first run
n_repl2 = 5000 # sample size for second run, if first run fails
thresh_percent = 0.25 # percent of true parameters for fail cut-off
thresh_min = 0.75 # minimum difference estimate - true to fail test
fit_sizes = [1000, 5000] # sample sizes to try
thresh_percent = 0.25 # percent of true parameters for fail cut-off
thresh_min = 0.75 # minimum difference estimate - true to fail test
distslow = [ 'ncx2', 'rdist', 'gausshyper', 'recipinvgauss', 'ksone', 'genexpon',
'vonmises', 'rice', 'mielke',
'powerlognorm', 'kstwobign', 'tukeylambda','betaprime', 'gengamma',
'johnsonsb', 'burr', 'truncexpon', 'pearson3', 'exponweib', 'nakagami',
'wrapcauchy']
dist_rarely_fitted = ['f', 'ncf', 'nct', 'chi']
distskip = distslow + dist_rarely_fitted
#distcont = [['genextreme', (3.3184017469423535,)]]
#@npt.dec.slow
failing_fits = [
'burr',
'chi',
'chi2',
'gausshyper',
'genexpon',
'gengamma',
'ksone',
'mielke',
'ncf',
'ncx2',
'pearson3',
'powerlognorm',
'truncexpon',
'tukeylambda',
'vonmises',
'wrapcauchy',
]
# Don't run the fit test on these:
skip_fit = [
'erlang', # Subclass of gamma, generates a warning.
]
@dec.slow
def test_cont_fit():
# this tests the closeness of the estimated parameters to the true
# parameters with fit method of continuous distributions
for distname, arg in distcont:
if distname not in distskip:
yield check_cont_fit, distname,arg
@npt.dec.slow
def _est_cont_fit_slow():
# this tests the closeness of the estimated parameters to the true
# parameters with fit method of continuous distributions
# Note: is slow, some distributions don't converge with sample size <= 10000
for distname, arg in distcont:
if distname in distslow:
if distname not in skip_fit:
yield check_cont_fit, distname,arg
def test_lognorm_fit_ticket1131():
params = [(2.1, 1.,1.), (1.,10.,1.), (1.,1.,10.)]
for param in params:
yield check_cont_fit, 'lognorm', param
def check_cont_fit(distname,arg):
distfn = getattr(stats, distname)
rvs = distfn.rvs(size=n_repl1,*arg)
est = distfn.fit(rvs) #, *arg) # start with default values
n = distfn.numargs + 2
truearg = np.hstack([arg,[0.0, 1.0]])[:n]
if distname in failing_fits:
# Skip failing fits unless overridden
xfail = True
try:
xfail = not int(os.environ['SCIPY_XFAIL'])
except:
pass
if xfail:
msg = "Fitting %s doesn't work reliably yet" % distname
msg += " [Set environment variable SCIPY_XFAIL=1 to run this test nevertheless.]"
dec.knownfailureif(True, msg)(lambda: None)()
diff = est-truearg
distfn = getattr(stats, distname)
txt = ''
truearg = np.hstack([arg,[0.0,1.0]])
diffthreshold = np.max(np.vstack([truearg*thresh_percent,
np.ones(distfn.numargs+2)*thresh_min]),0)
# threshold for location
diffthreshold[-2] = np.max([np.abs(rvs.mean())*thresh_percent,thresh_min])
np.ones(distfn.numargs+2)*thresh_min]),0)
for fit_size in fit_sizes:
# Note that if a fit succeeds, the other fit_sizes are skipped
np.random.seed(1234)
with np.errstate(all='ignore'):
rvs = distfn.rvs(size=fit_size, *arg)
est = distfn.fit(rvs) # start with default values
diff = est - truearg
# threshold for location
diffthreshold[-2] = np.max([np.abs(rvs.mean())*thresh_percent,thresh_min])
if np.any(np.isnan(est)):
raise AssertionError('nan returned in fit')
if np.any(np.isnan(est)):
raise AssertionError('nan returned in fit')
else:
if np.all(np.abs(diff) <= diffthreshold):
break
else:
if np.any((np.abs(diff) - diffthreshold) > 0.0):
## txt = 'WARNING - diff too large with small sample'
## print 'parameter diff =', diff - diffthreshold, txt
rvs = np.concatenate([rvs,distfn.rvs(size=n_repl2-n_repl1,*arg)])
est = distfn.fit(rvs) #,*arg)
truearg = np.hstack([arg,[0.0,1.0]])[:n]
diff = est-truearg
if np.any((np.abs(diff) - diffthreshold) > 0.0):
txt = 'parameter: %s\n' % str(truearg)
txt += 'estimated: %s\n' % str(est)
txt += 'diff : %s\n' % str(diff)
raise AssertionError('fit not very good in %s\n' % distfn.name + txt)
txt = 'parameter: %s\n' % str(truearg)
txt += 'estimated: %s\n' % str(est)
txt += 'diff : %s\n' % str(diff)
raise AssertionError('fit not very good in %s\n' % distfn.name + txt)
if __name__ == "__main__":
check_cont_fit('bradford', (0.29891359763170633,))
# check_cont_fit('lognorm', (10,1,1))
# check_cont_fit('ncx2', (21, 1.0560465975116415))
import nose
#nose.run(argv=['', __file__])
nose.runmodule(argv=[__file__,'-s'], exit=False)
np.testing.run_module_suite()

@ -1,9 +1,10 @@
from __future__ import division, print_function, absolute_import
from wafo import stats
import numpy as np
from numpy.testing import assert_almost_equal, assert_
from numpy.testing import assert_almost_equal, assert_, assert_raises, \
assert_array_almost_equal, assert_array_almost_equal_nulp, run_module_suite
def test_kde_1d():
#some basic tests comparing to normal distribution
@ -16,7 +17,7 @@ def test_kde_1d():
# get kde for original sample
gkde = stats.gaussian_kde(xn)
# evaluate the density funtion for the kde for some points
# evaluate the density function for the kde for some points
xs = np.linspace(-7,7,501)
kdepdf = gkde.evaluate(xs)
normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd)
@ -34,3 +35,150 @@ def test_kde_1d():
(kdepdf**2).sum()*intervall, decimal=2)
assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2),
(kdepdf*normpdf).sum()*intervall, decimal=2)
def test_kde_bandwidth_method():
def scotts_factor(kde_obj):
"""Same as default, just check that it works."""
return np.power(kde_obj.n, -1./(kde_obj.d+4))
np.random.seed(8765678)
n_basesample = 50
xn = np.random.randn(n_basesample)
# Default
gkde = stats.gaussian_kde(xn)
# Supply a callable
gkde2 = stats.gaussian_kde(xn, bw_method=scotts_factor)
# Supply a scalar
gkde3 = stats.gaussian_kde(xn, bw_method=gkde.factor)
xs = np.linspace(-7,7,51)
kdepdf = gkde.evaluate(xs)
kdepdf2 = gkde2.evaluate(xs)
assert_almost_equal(kdepdf, kdepdf2)
kdepdf3 = gkde3.evaluate(xs)
assert_almost_equal(kdepdf, kdepdf3)
assert_raises(ValueError, stats.gaussian_kde, xn, bw_method='wrongstring')
# Subclasses that should stay working (extracted from various sources).
# Unfortunately the earlier design of gaussian_kde made it necessary for users
# to create these kinds of subclasses, or call _compute_covariance() directly.
class _kde_subclass1(stats.gaussian_kde):
def __init__(self, dataset):
self.dataset = np.atleast_2d(dataset)
self.d, self.n = self.dataset.shape
self.covariance_factor = self.scotts_factor
self._compute_covariance()
class _kde_subclass2(stats.gaussian_kde):
def __init__(self, dataset):
self.covariance_factor = self.scotts_factor
super(_kde_subclass2, self).__init__(dataset)
class _kde_subclass3(stats.gaussian_kde):
def __init__(self, dataset, covariance):
self.covariance = covariance
stats.gaussian_kde.__init__(self, dataset)
def _compute_covariance(self):
self.inv_cov = np.linalg.inv(self.covariance)
self._norm_factor = np.sqrt(np.linalg.det(2*np.pi * self.covariance)) \
* self.n
class _kde_subclass4(stats.gaussian_kde):
def covariance_factor(self):
return 0.5 * self.silverman_factor()
def test_gaussian_kde_subclassing():
x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
xs = np.linspace(-10, 10, num=50)
# gaussian_kde itself
kde = stats.gaussian_kde(x1)
ys = kde(xs)
# subclass 1
kde1 = _kde_subclass1(x1)
y1 = kde1(xs)
assert_array_almost_equal_nulp(ys, y1, nulp=10)
# subclass 2
kde2 = _kde_subclass2(x1)
y2 = kde2(xs)
assert_array_almost_equal_nulp(ys, y2, nulp=10)
# subclass 3
kde3 = _kde_subclass3(x1, kde.covariance)
y3 = kde3(xs)
assert_array_almost_equal_nulp(ys, y3, nulp=10)
# subclass 4
kde4 = _kde_subclass4(x1)
y4 = kde4(x1)
y_expected = [0.06292987, 0.06346938, 0.05860291, 0.08657652, 0.07904017]
assert_array_almost_equal(y_expected, y4, decimal=6)
# Not a subclass, but check for use of _compute_covariance()
kde5 = kde
kde5.covariance_factor = lambda: kde.factor
kde5._compute_covariance()
y5 = kde5(xs)
assert_array_almost_equal_nulp(ys, y5, nulp=10)
def test_gaussian_kde_covariance_caching():
x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
xs = np.linspace(-10, 10, num=5)
# These expected values are from scipy 0.10, before some changes to
# gaussian_kde. They were not compared with any external reference.
y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754, 0.01664475]
# Set the bandwidth, then reset it to the default.
kde = stats.gaussian_kde(x1)
kde.set_bandwidth(bw_method=0.5)
kde.set_bandwidth(bw_method='scott')
y2 = kde(xs)
assert_array_almost_equal(y_expected, y2, decimal=7)
def test_gaussian_kde_monkeypatch():
"""Ugly, but people may rely on this. See scipy pull request 123,
specifically the linked ML thread "Width of the Gaussian in stats.kde".
If it is necessary to break this later on, that is to be discussed on ML.
"""
x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
xs = np.linspace(-10, 10, num=50)
# The old monkeypatched version to get at Silverman's Rule.
kde = stats.gaussian_kde(x1)
kde.covariance_factor = kde.silverman_factor
kde._compute_covariance()
y1 = kde(xs)
# The new saner version.
kde2 = stats.gaussian_kde(x1, bw_method='silverman')
y2 = kde2(xs)
assert_array_almost_equal_nulp(y1, y2, nulp=10)
def test_kde_integer_input():
"""Regression test for #1181."""
x1 = np.arange(5)
kde = stats.gaussian_kde(x1)
y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869, 0.13480721]
assert_array_almost_equal(kde(x1), y_expected, decimal=6)
if __name__ == "__main__":
run_module_suite()

@ -0,0 +1,789 @@
# Author: Travis Oliphant, 2002
#
# Further enhancements and tests added by numerous SciPy developers.
#
from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from numpy.random import RandomState
from numpy.testing import (TestCase, run_module_suite, assert_array_equal,
assert_almost_equal, assert_array_less, assert_array_almost_equal,
assert_raises, assert_, assert_allclose, assert_equal, dec)
from scipy import stats
# Matplotlib is not a scipy dependency but is optionally used in probplot, so
# check if it's available
try:
import matplotlib.pyplot as plt
have_matplotlib = True
except:
have_matplotlib = False
g1 = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000]
g2 = [0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988]
g3 = [0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996]
g4 = [1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996]
g5 = [0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996]
g6 = [1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996]
g7 = [0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002]
g8 = [0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006]
g9 = [1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991]
g10 = [0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997]
class TestShapiro(TestCase):
def test_basic(self):
x1 = [0.11,7.87,4.61,10.14,7.95,3.14,0.46,
4.43,0.21,4.75,0.71,1.52,3.24,
0.93,0.42,4.97,9.53,4.55,0.47,6.66]
w,pw = stats.shapiro(x1)
assert_almost_equal(w,0.90047299861907959,6)
assert_almost_equal(pw,0.042089745402336121,6)
x2 = [1.36,1.14,2.92,2.55,1.46,1.06,5.27,-1.11,
3.48,1.10,0.88,-0.51,1.46,0.52,6.20,1.69,
0.08,3.67,2.81,3.49]
w,pw = stats.shapiro(x2)
assert_almost_equal(w,0.9590270,6)
assert_almost_equal(pw,0.52460,3)
def test_bad_arg(self):
# Length of x is less than 3.
x = [1]
assert_raises(ValueError, stats.shapiro, x)
class TestAnderson(TestCase):
def test_normal(self):
rs = RandomState(1234567890)
x1 = rs.standard_exponential(size=50)
x2 = rs.standard_normal(size=50)
A,crit,sig = stats.anderson(x1)
assert_array_less(crit[:-1], A)
A,crit,sig = stats.anderson(x2)
assert_array_less(A, crit[-2:])
def test_expon(self):
rs = RandomState(1234567890)
x1 = rs.standard_exponential(size=50)
x2 = rs.standard_normal(size=50)
A,crit,sig = stats.anderson(x1,'expon')
assert_array_less(A, crit[-2:])
olderr = np.seterr(all='ignore')
try:
A,crit,sig = stats.anderson(x2,'expon')
finally:
np.seterr(**olderr)
assert_(A > crit[-1])
def test_bad_arg(self):
assert_raises(ValueError, stats.anderson, [1], dist='plate_of_shrimp')
class TestAnsari(TestCase):
def test_small(self):
x = [1,2,3,3,4]
y = [3,2,6,1,6,1,4,1]
W, pval = stats.ansari(x,y)
assert_almost_equal(W,23.5,11)
assert_almost_equal(pval,0.13499256881897437,11)
def test_approx(self):
ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
101, 96, 97, 102, 107, 113, 116, 113, 110, 98))
parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104,
100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99))
with warnings.catch_warnings():
warnings.filterwarnings('ignore',
message="Ties preclude use of exact statistic.")
W, pval = stats.ansari(ramsay, parekh)
assert_almost_equal(W,185.5,11)
assert_almost_equal(pval,0.18145819972867083,11)
def test_exact(self):
W,pval = stats.ansari([1,2,3,4],[15,5,20,8,10,12])
assert_almost_equal(W,10.0,11)
assert_almost_equal(pval,0.533333333333333333,7)
def test_bad_arg(self):
assert_raises(ValueError, stats.ansari, [], [1])
assert_raises(ValueError, stats.ansari, [1], [])
class TestBartlett(TestCase):
def test_data(self):
args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
T, pval = stats.bartlett(*args)
assert_almost_equal(T,20.78587342806484,7)
assert_almost_equal(pval,0.0136358632781,7)
def test_bad_arg(self):
# Too few args raises ValueError.
assert_raises(ValueError, stats.bartlett, [1])
class TestLevene(TestCase):
def test_data(self):
args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
W, pval = stats.levene(*args)
assert_almost_equal(W,1.7059176930008939,7)
assert_almost_equal(pval,0.0990829755522,7)
def test_trimmed1(self):
# Test that center='trimmed' gives the same result as center='mean'
# when proportiontocut=0.
W1, pval1 = stats.levene(g1, g2, g3, center='mean')
W2, pval2 = stats.levene(g1, g2, g3, center='trimmed', proportiontocut=0.0)
assert_almost_equal(W1, W2)
assert_almost_equal(pval1, pval2)
def test_trimmed2(self):
x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
np.random.seed(1234)
x2 = np.random.permutation(x)
# Use center='trimmed'
W0, pval0 = stats.levene(x, y, center='trimmed', proportiontocut=0.125)
W1, pval1 = stats.levene(x2, y, center='trimmed', proportiontocut=0.125)
# Trim the data here, and use center='mean'
W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean')
# Result should be the same.
assert_almost_equal(W0, W2)
assert_almost_equal(W1, W2)
assert_almost_equal(pval1, pval2)
def test_equal_mean_median(self):
x = np.linspace(-1,1,21)
np.random.seed(1234)
x2 = np.random.permutation(x)
y = x**3
W1, pval1 = stats.levene(x, y, center='mean')
W2, pval2 = stats.levene(x2, y, center='median')
assert_almost_equal(W1, W2)
assert_almost_equal(pval1, pval2)
def test_bad_keyword(self):
x = np.linspace(-1,1,21)
assert_raises(TypeError, stats.levene, x, x, portiontocut=0.1)
def test_bad_center_value(self):
x = np.linspace(-1,1,21)
assert_raises(ValueError, stats.levene, x, x, center='trim')
def test_too_few_args(self):
assert_raises(ValueError, stats.levene, [1])
class TestBinomP(TestCase):
def test_data(self):
pval = stats.binom_test(100,250)
assert_almost_equal(pval,0.0018833009350757682,11)
pval = stats.binom_test(201,405)
assert_almost_equal(pval,0.92085205962670713,11)
pval = stats.binom_test([682,243],p=3.0/4)
assert_almost_equal(pval,0.38249155957481695,11)
def test_bad_len_x(self):
# Length of x must be 1 or 2.
assert_raises(ValueError, stats.binom_test, [1,2,3])
def test_bad_n(self):
# len(x) is 1, but n is invalid.
# Missing n
assert_raises(ValueError, stats.binom_test, [100])
# n less than x[0]
assert_raises(ValueError, stats.binom_test, [100], n=50)
def test_bad_p(self):
assert_raises(ValueError, stats.binom_test, [50, 50], p=2.0)
class TestFindRepeats(TestCase):
def test_basic(self):
a = [1,2,3,4,1,2,3,4,1,2,5]
res,nums = stats.find_repeats(a)
assert_array_equal(res,[1,2,3,4])
assert_array_equal(nums,[3,3,2,2])
def test_empty_result(self):
# Check that empty arrays are returned when there are no repeats.
a = [10, 20, 50, 30, 40]
repeated, counts = stats.find_repeats(a)
assert_array_equal(repeated, [])
assert_array_equal(counts, [])
class TestFligner(TestCase):
def test_data(self):
# numbers from R: fligner.test in package stats
x1 = np.arange(5)
assert_array_almost_equal(stats.fligner(x1,x1**2),
(3.2282229927203536, 0.072379187848207877), 11)
def test_trimmed1(self):
# Test that center='trimmed' gives the same result as center='mean'
# when proportiontocut=0.
Xsq1, pval1 = stats.fligner(g1, g2, g3, center='mean')
Xsq2, pval2 = stats.fligner(g1, g2, g3, center='trimmed', proportiontocut=0.0)
assert_almost_equal(Xsq1, Xsq2)
assert_almost_equal(pval1, pval2)
def test_trimmed2(self):
x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
# Use center='trimmed'
Xsq1, pval1 = stats.fligner(x, y, center='trimmed', proportiontocut=0.125)
# Trim the data here, and use center='mean'
Xsq2, pval2 = stats.fligner(x[1:-1], y[1:-1], center='mean')
# Result should be the same.
assert_almost_equal(Xsq1, Xsq2)
assert_almost_equal(pval1, pval2)
# The following test looks reasonable at first, but fligner() uses the
# function stats.rankdata(), and in one of the cases in this test,
# there are ties, while in the other (because of normal rounding
# errors) there are not. This difference leads to differences in the
# third significant digit of W.
#
#def test_equal_mean_median(self):
# x = np.linspace(-1,1,21)
# y = x**3
# W1, pval1 = stats.fligner(x, y, center='mean')
# W2, pval2 = stats.fligner(x, y, center='median')
# assert_almost_equal(W1, W2)
# assert_almost_equal(pval1, pval2)
def test_bad_keyword(self):
x = np.linspace(-1,1,21)
assert_raises(TypeError, stats.fligner, x, x, portiontocut=0.1)
def test_bad_center_value(self):
x = np.linspace(-1,1,21)
assert_raises(ValueError, stats.fligner, x, x, center='trim')
def test_bad_num_args(self):
# Too few args raises ValueError.
assert_raises(ValueError, stats.fligner, [1])
class TestMood(TestCase):
def test_mood(self):
# numbers from R: mood.test in package stats
x1 = np.arange(5)
assert_array_almost_equal(stats.mood(x1, x1**2),
(-1.3830857299399906, 0.16663858066771478), 11)
def test_mood_order_of_args(self):
# z should change sign when the order of arguments changes, pvalue
# should not change
np.random.seed(1234)
x1 = np.random.randn(10, 1)
x2 = np.random.randn(15, 1)
z1, p1 = stats.mood(x1, x2)
z2, p2 = stats.mood(x2, x1)
assert_array_almost_equal([z1, p1], [-z2, p2])
def test_mood_with_axis_none(self):
#Test with axis = None, compare with results from R
x1 = [-0.626453810742332, 0.183643324222082, -0.835628612410047,
1.59528080213779, 0.329507771815361, -0.820468384118015,
0.487429052428485, 0.738324705129217, 0.575781351653492,
-0.305388387156356, 1.51178116845085, 0.389843236411431,
-0.621240580541804, -2.2146998871775, 1.12493091814311,
-0.0449336090152309, -0.0161902630989461, 0.943836210685299,
0.821221195098089, 0.593901321217509]
x2 = [-0.896914546624981, 0.184849184646742, 1.58784533120882,
-1.13037567424629, -0.0802517565509893, 0.132420284381094,
0.707954729271733, -0.23969802417184, 1.98447393665293,
-0.138787012119665, 0.417650750792556, 0.981752777463662,
-0.392695355503813, -1.03966897694891, 1.78222896030858,
-2.31106908460517, 0.878604580921265, 0.035806718015226,
1.01282869212708, 0.432265154539617, 2.09081920524915,
-1.19992581964387, 1.58963820029007, 1.95465164222325,
0.00493777682814261, -2.45170638784613, 0.477237302613617,
-0.596558168631403, 0.792203270299649, 0.289636710177348]
x1 = np.array(x1)
x2 = np.array(x2)
x1.shape = (10, 2)
x2.shape = (15, 2)
assert_array_almost_equal(stats.mood(x1, x2, axis=None),
[-1.31716607555, 0.18778296257])
def test_mood_2d(self):
# Test if the results of mood test in 2-D case are consistent with the
# R result for the same inputs. Numbers from R mood.test().
ny = 5
np.random.seed(1234)
x1 = np.random.randn(10, ny)
x2 = np.random.randn(15, ny)
z_vectest, pval_vectest = stats.mood(x1, x2)
for j in range(ny):
assert_array_almost_equal([z_vectest[j], pval_vectest[j]],
stats.mood(x1[:, j], x2[:, j]))
# inverse order of dimensions
x1 = x1.transpose()
x2 = x2.transpose()
z_vectest, pval_vectest = stats.mood(x1, x2, axis=1)
for i in range(ny):
# check axis handling is self consistent
assert_array_almost_equal([z_vectest[i], pval_vectest[i]],
stats.mood(x1[i, :], x2[i, :]))
def test_mood_3d(self):
shape = (10, 5, 6)
np.random.seed(1234)
x1 = np.random.randn(*shape)
x2 = np.random.randn(*shape)
for axis in range(3):
z_vectest, pval_vectest = stats.mood(x1, x2, axis=axis)
# Tests that result for 3-D arrays is equal to that for the
# same calculation on a set of 1-D arrays taken from the
# 3-D array
axes_idx = ([1, 2], [0, 2], [0, 1]) # the two axes != axis
for i in range(shape[axes_idx[axis][0]]):
for j in range(shape[axes_idx[axis][1]]):
if axis == 0:
slice1 = x1[:, i, j]
slice2 = x2[:, i, j]
elif axis == 1:
slice1 = x1[i, :, j]
slice2 = x2[i, :, j]
else:
slice1 = x1[i, j, :]
slice2 = x2[i, j, :]
assert_array_almost_equal([z_vectest[i, j],
pval_vectest[i, j]],
stats.mood(slice1, slice2))
def test_mood_bad_arg(self):
# Raise ValueError when the sum of the lengths of the args is less than 3
assert_raises(ValueError, stats.mood, [1], [])
class TestProbplot(TestCase):
def test_basic(self):
np.random.seed(12345)
x = stats.norm.rvs(size=20)
osm, osr = stats.probplot(x, fit=False)
osm_expected = [-1.8241636, -1.38768012, -1.11829229, -0.91222575,
-0.73908135, -0.5857176, -0.44506467, -0.31273668,
-0.18568928, -0.06158146, 0.06158146, 0.18568928,
0.31273668, 0.44506467, 0.5857176, 0.73908135,
0.91222575, 1.11829229, 1.38768012, 1.8241636]
assert_allclose(osr, np.sort(x))
assert_allclose(osm, osm_expected)
res, res_fit = stats.probplot(x, fit=True)
res_fit_expected = [1.05361841, 0.31297795, 0.98741609]
assert_allclose(res_fit, res_fit_expected)
def test_sparams_keyword(self):
np.random.seed(123456)
x = stats.norm.rvs(size=100)
# Check that None, () and 0 (loc=0, for normal distribution) all work
# and give the same results
osm1, osr1 = stats.probplot(x, sparams=None, fit=False)
osm2, osr2 = stats.probplot(x, sparams=0, fit=False)
osm3, osr3 = stats.probplot(x, sparams=(), fit=False)
assert_allclose(osm1, osm2)
assert_allclose(osm1, osm3)
assert_allclose(osr1, osr2)
assert_allclose(osr1, osr3)
# Check giving (loc, scale) params for normal distribution
osm, osr = stats.probplot(x, sparams=(), fit=False)
def test_dist_keyword(self):
np.random.seed(12345)
x = stats.norm.rvs(size=20)
osm1, osr1 = stats.probplot(x, fit=False, dist='t', sparams=(3,))
osm2, osr2 = stats.probplot(x, fit=False, dist=stats.t, sparams=(3,))
assert_allclose(osm1, osm2)
assert_allclose(osr1, osr2)
assert_raises(ValueError, stats.probplot, x, dist='wrong-dist-name')
assert_raises(AttributeError, stats.probplot, x, dist=[])
class custom_dist(object):
"""Some class that looks just enough like a distribution."""
def ppf(self, q):
return stats.norm.ppf(q, loc=2)
osm1, osr1 = stats.probplot(x, sparams=(2,), fit=False)
osm2, osr2 = stats.probplot(x, dist=custom_dist(), fit=False)
assert_allclose(osm1, osm2)
assert_allclose(osr1, osr2)
@dec.skipif(not have_matplotlib)
def test_plot_kwarg(self):
np.random.seed(7654321)
fig = plt.figure()
fig.add_subplot(111)
x = stats.t.rvs(3, size=100)
res1, fitres1 = stats.probplot(x, plot=plt)
plt.close()
res2, fitres2 = stats.probplot(x, plot=None)
res3 = stats.probplot(x, fit=False, plot=plt)
plt.close()
res4 = stats.probplot(x, fit=False, plot=None)
# Check that results are consistent between combinations of `fit` and
# `plot` keywords.
assert_(len(res1) == len(res2) == len(res3) == len(res4) == 2)
assert_allclose(res1, res2)
assert_allclose(res1, res3)
assert_allclose(res1, res4)
assert_allclose(fitres1, fitres2)
# Check that a Matplotlib Axes object is accepted
fig = plt.figure()
ax = fig.add_subplot(111)
stats.probplot(x, fit=False, plot=ax)
plt.close()
def test_probplot_bad_args(self):
# Raise ValueError when given an invalid distribution.
assert_raises(ValueError, stats.probplot, [1], dist="plate_of_shrimp")
def test_wilcoxon_bad_arg():
# Raise ValueError when two args of different lengths are given or
# zero_method is unknown.
assert_raises(ValueError, stats.wilcoxon, [1], [1,2])
assert_raises(ValueError, stats.wilcoxon, [1,2], [1,2], "dummy")
def test_mvsdist_bad_arg():
# Raise ValueError if fewer than two data points are given.
data = [1]
assert_raises(ValueError, stats.mvsdist, data)
def test_kstat_bad_arg():
# Raise ValueError if n > 4 or n > 1.
data = [1]
n = 10
assert_raises(ValueError, stats.kstat, data, n=n)
def test_kstatvar_bad_arg():
# Raise ValueError is n is not 1 or 2.
data = [1]
n = 10
assert_raises(ValueError, stats.kstatvar, data, n=n)
def test_ppcc_max_bad_arg():
# Raise ValueError when given an invalid distribution.
data = [1]
assert_raises(ValueError, stats.ppcc_max, data, dist="plate_of_shrimp")
class TestBoxcox_llf(TestCase):
def test_basic(self):
np.random.seed(54321)
x = stats.norm.rvs(size=10000, loc=10)
lmbda = 1
llf = stats.boxcox_llf(lmbda, x)
llf_expected = -x.size / 2. * np.log(np.sum(x.std()**2))
assert_allclose(llf, llf_expected)
def test_array_like(self):
np.random.seed(54321)
x = stats.norm.rvs(size=100, loc=10)
lmbda = 1
llf = stats.boxcox_llf(lmbda, x)
llf2 = stats.boxcox_llf(lmbda, list(x))
assert_allclose(llf, llf2, rtol=1e-12)
def test_2d_input(self):
# Note: boxcox_llf() was already working with 2-D input (sort of), so
# keep it like that. boxcox() doesn't work with 2-D input though, due
# to brent() returning a scalar.
np.random.seed(54321)
x = stats.norm.rvs(size=100, loc=10)
lmbda = 1
llf = stats.boxcox_llf(lmbda, x)
llf2 = stats.boxcox_llf(lmbda, np.vstack([x, x]).T)
assert_allclose([llf, llf], llf2, rtol=1e-12)
def test_empty(self):
assert_(np.isnan(stats.boxcox_llf(1, [])))
class TestBoxcox(TestCase):
def test_fixed_lmbda(self):
np.random.seed(12345)
x = stats.loggamma.rvs(5, size=50) + 5
xt = stats.boxcox(x, lmbda=1)
assert_allclose(xt, x - 1)
xt = stats.boxcox(x, lmbda=-1)
assert_allclose(xt, 1 - 1/x)
xt = stats.boxcox(x, lmbda=0)
assert_allclose(xt, np.log(x))
# Also test that array_like input works
xt = stats.boxcox(list(x), lmbda=0)
assert_allclose(xt, np.log(x))
def test_lmbda_None(self):
np.random.seed(1234567)
# Start from normal rv's, do inverse transform to check that
# optimization function gets close to the right answer.
np.random.seed(1245)
lmbda = 2.5
x = stats.norm.rvs(loc=10, size=50000)
x_inv = (x * lmbda + 1)**(-lmbda)
xt, maxlog = stats.boxcox(x_inv)
assert_almost_equal(maxlog, -1 / lmbda, decimal=2)
def test_alpha(self):
np.random.seed(1234)
x = stats.loggamma.rvs(5, size=50) + 5
# Some regular values for alpha, on a small sample size
_, _, interval = stats.boxcox(x, alpha=0.75)
assert_allclose(interval, [4.004485780226041, 5.138756355035744])
_, _, interval = stats.boxcox(x, alpha=0.05)
assert_allclose(interval, [1.2138178554857557, 8.209033272375663])
# Try some extreme values, see we don't hit the N=500 limit
x = stats.loggamma.rvs(7, size=500) + 15
_, _, interval = stats.boxcox(x, alpha=0.001)
assert_allclose(interval, [0.3988867, 11.40553131])
_, _, interval = stats.boxcox(x, alpha=0.999)
assert_allclose(interval, [5.83316246, 5.83735292])
def test_boxcox_bad_arg(self):
# Raise ValueError if any data value is negative.
x = np.array([-1])
assert_raises(ValueError, stats.boxcox, x)
def test_empty(self):
assert_(stats.boxcox([]).shape == (0,))
class TestBoxcoxNormmax(TestCase):
def setUp(self):
np.random.seed(12345)
self.x = stats.loggamma.rvs(5, size=50) + 5
def test_pearsonr(self):
maxlog = stats.boxcox_normmax(self.x)
assert_allclose(maxlog, 1.804465325046)
def test_mle(self):
maxlog = stats.boxcox_normmax(self.x, method='mle')
assert_allclose(maxlog, 1.758101454114)
# Check that boxcox() uses 'mle'
_, maxlog_boxcox = stats.boxcox(self.x)
assert_allclose(maxlog_boxcox, maxlog)
def test_all(self):
maxlog_all = stats.boxcox_normmax(self.x, method='all')
assert_allclose(maxlog_all, [1.804465325046, 1.758101454114])
class TestBoxcoxNormplot(TestCase):
def setUp(self):
np.random.seed(7654321)
self.x = stats.loggamma.rvs(5, size=500) + 5
def test_basic(self):
N = 5
lmbdas, ppcc = stats.boxcox_normplot(self.x, -10, 10, N=N)
ppcc_expected = [0.57783375, 0.83610988, 0.97524311, 0.99756057,
0.95843297]
assert_allclose(lmbdas, np.linspace(-10, 10, num=N))
assert_allclose(ppcc, ppcc_expected)
@dec.skipif(not have_matplotlib)
def test_plot_kwarg(self):
# Check with the matplotlib.pyplot module
fig = plt.figure()
fig.add_subplot(111)
stats.boxcox_normplot(self.x, -20, 20, plot=plt)
plt.close()
# Check that a Matplotlib Axes object is accepted
fig.add_subplot(111)
ax = fig.add_subplot(111)
stats.boxcox_normplot(self.x, -20, 20, plot=ax)
plt.close()
def test_invalid_inputs(self):
# `lb` has to be larger than `la`
assert_raises(ValueError, stats.boxcox_normplot, self.x, 1, 0)
# `x` can not contain negative values
assert_raises(ValueError, stats.boxcox_normplot, [-1, 1] , 0, 1)
def test_empty(self):
assert_(stats.boxcox_normplot([], 0, 1).size == 0)
class TestCircFuncs(TestCase):
def test_circfuncs(self):
x = np.array([355,5,2,359,10,350])
M = stats.circmean(x, high=360)
Mval = 0.167690146
assert_allclose(M, Mval, rtol=1e-7)
V = stats.circvar(x, high=360)
Vval = 42.51955609
assert_allclose(V, Vval, rtol=1e-7)
S = stats.circstd(x, high=360)
Sval = 6.520702116
assert_allclose(S, Sval, rtol=1e-7)
def test_circfuncs_small(self):
x = np.array([20,21,22,18,19,20.5,19.2])
M1 = x.mean()
M2 = stats.circmean(x, high=360)
assert_allclose(M2, M1, rtol=1e-5)
V1 = x.var()
V2 = stats.circvar(x, high=360)
assert_allclose(V2, V1, rtol=1e-4)
S1 = x.std()
S2 = stats.circstd(x, high=360)
assert_allclose(S2, S1, rtol=1e-4)
def test_circmean_axis(self):
x = np.array([[355,5,2,359,10,350],
[351,7,4,352,9,349],
[357,9,8,358,4,356]])
M1 = stats.circmean(x, high=360)
M2 = stats.circmean(x.ravel(), high=360)
assert_allclose(M1, M2, rtol=1e-14)
M1 = stats.circmean(x, high=360, axis=1)
M2 = [stats.circmean(x[i], high=360) for i in range(x.shape[0])]
assert_allclose(M1, M2, rtol=1e-14)
M1 = stats.circmean(x, high=360, axis=0)
M2 = [stats.circmean(x[:,i], high=360) for i in range(x.shape[1])]
assert_allclose(M1, M2, rtol=1e-14)
def test_circvar_axis(self):
x = np.array([[355,5,2,359,10,350],
[351,7,4,352,9,349],
[357,9,8,358,4,356]])
V1 = stats.circvar(x, high=360)
V2 = stats.circvar(x.ravel(), high=360)
assert_allclose(V1, V2, rtol=1e-11)
V1 = stats.circvar(x, high=360, axis=1)
V2 = [stats.circvar(x[i], high=360) for i in range(x.shape[0])]
assert_allclose(V1, V2, rtol=1e-11)
V1 = stats.circvar(x, high=360, axis=0)
V2 = [stats.circvar(x[:,i], high=360) for i in range(x.shape[1])]
assert_allclose(V1, V2, rtol=1e-11)
def test_circstd_axis(self):
x = np.array([[355,5,2,359,10,350],
[351,7,4,352,9,349],
[357,9,8,358,4,356]])
S1 = stats.circstd(x, high=360)
S2 = stats.circstd(x.ravel(), high=360)
assert_allclose(S1, S2, rtol=1e-11)
S1 = stats.circstd(x, high=360, axis=1)
S2 = [stats.circstd(x[i], high=360) for i in range(x.shape[0])]
assert_allclose(S1, S2, rtol=1e-11)
S1 = stats.circstd(x, high=360, axis=0)
S2 = [stats.circstd(x[:,i], high=360) for i in range(x.shape[1])]
assert_allclose(S1, S2, rtol=1e-11)
def test_circfuncs_array_like(self):
x = [355,5,2,359,10,350]
assert_allclose(stats.circmean(x, high=360), 0.167690146, rtol=1e-7)
assert_allclose(stats.circvar(x, high=360), 42.51955609, rtol=1e-7)
assert_allclose(stats.circstd(x, high=360), 6.520702116, rtol=1e-7)
def test_empty(self):
assert_(np.isnan(stats.circmean([])))
assert_(np.isnan(stats.circstd([])))
assert_(np.isnan(stats.circvar([])))
def test_accuracy_wilcoxon():
freq = [1, 4, 16, 15, 8, 4, 5, 1, 2]
nums = range(-4, 5)
x = np.concatenate([[u] * v for u, v in zip(nums, freq)])
y = np.zeros(x.size)
T, p = stats.wilcoxon(x, y, "pratt")
assert_allclose(T, 423)
assert_allclose(p, 0.00197547303533107)
T, p = stats.wilcoxon(x, y, "zsplit")
assert_allclose(T, 441)
assert_allclose(p, 0.0032145343172473055)
T, p = stats.wilcoxon(x, y, "wilcox")
assert_allclose(T, 327)
assert_allclose(p, 0.00641346115861)
# Test the 'correction' option, using values computed in R with:
# > wilcox.test(x, y, paired=TRUE, exact=FALSE, correct={FALSE,TRUE})
x = np.array([120, 114, 181, 188, 180, 146, 121, 191, 132, 113, 127, 112])
y = np.array([133, 143, 119, 189, 112, 199, 198, 113, 115, 121, 142, 187])
T, p = stats.wilcoxon(x, y, correction=False)
assert_equal(T, 34)
assert_allclose(p, 0.6948866, rtol=1e-6)
T, p = stats.wilcoxon(x, y, correction=True)
assert_equal(T, 34)
assert_allclose(p, 0.7240817, rtol=1e-6)
def test_wilcoxon_tie():
# Regression test for gh-2391.
# Corresponding R code is:
# > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=FALSE)
# > result$p.value
# [1] 0.001565402
# > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=TRUE)
# > result$p.value
# [1] 0.001904195
stat, p = stats.wilcoxon([0.1] * 10)
expected_p = 0.001565402
assert_equal(stat, 0)
assert_allclose(p, expected_p, rtol=1e-6)
stat, p = stats.wilcoxon([0.1] * 10, correction=True)
expected_p = 0.001904195
assert_equal(stat, 0)
assert_allclose(p, expected_p, rtol=1e-6)
if __name__ == "__main__":
run_module_suite()

@ -1,88 +1,91 @@
"""
Tests for the stats.mstats module (support for maskd arrays)
"""
from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from numpy import nan
import numpy.ma as ma
from numpy.ma import masked, nomask
import scipy.stats.mstats as mstats
import wafo.stats.mstats as mstats
from wafo import stats
from numpy.testing import TestCase, run_module_suite
from numpy.ma.testutils import assert_equal, assert_almost_equal, \
assert_array_almost_equal, assert_
from numpy.ma.testutils import (assert_equal, assert_almost_equal,
assert_array_almost_equal, assert_array_almost_equal_nulp, assert_,
assert_allclose, assert_raises)
class TestMquantiles(TestCase):
"""Regression tests for mstats module."""
def test_mquantiles_limit_keyword(self):
"""Ticket #867"""
data = np.array([[ 6., 7., 1.],
[ 47., 15., 2.],
[ 49., 36., 3.],
[ 15., 39., 4.],
[ 42., 40., -999.],
[ 41., 41., -999.],
[ 7., -999., -999.],
[ 39., -999., -999.],
[ 43., -999., -999.],
[ 40., -999., -999.],
[ 36., -999., -999.]])
# Regression test for Trac ticket #867
data = np.array([[6., 7., 1.],
[47., 15., 2.],
[49., 36., 3.],
[15., 39., 4.],
[42., 40., -999.],
[41., 41., -999.],
[7., -999., -999.],
[39., -999., -999.],
[43., -999., -999.],
[40., -999., -999.],
[36., -999., -999.]])
desired = [[19.2, 14.6, 1.45],
[40.0, 37.5, 2.5 ],
[40.0, 37.5, 2.5],
[42.8, 40.05, 3.55]]
quants = mstats.mquantiles(data, axis=0, limit=(0, 50))
assert_almost_equal(quants, desired)
class TestGMean(TestCase):
def test_1D(self):
a = (1,2,3,4)
actual= mstats.gmean(a)
actual = mstats.gmean(a)
desired = np.power(1*2*3*4,1./4.)
assert_almost_equal(actual, desired,decimal=14)
desired1 = mstats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
assert_(not isinstance(desired1, ma.MaskedArray))
#
a = ma.array((1,2,3,4),mask=(0,0,0,1))
actual= mstats.gmean(a)
actual = mstats.gmean(a)
desired = np.power(1*2*3,1./3.)
assert_almost_equal(actual, desired,decimal=14)
desired1 = mstats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
#
def test_2D(self):
a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
actual= mstats.gmean(a)
actual = mstats.gmean(a)
desired = np.array((1,2,3,4))
assert_array_almost_equal(actual, desired, decimal=14)
#
desired1 = mstats.gmean(a,axis=0)
assert_array_almost_equal(actual, desired1, decimal=14)
#
actual= mstats.gmean(a, -1)
actual = mstats.gmean(a, -1)
desired = ma.array((np.power(1*2*3*4,1./4.),
np.power(2*3,1./2.),
np.power(1*4,1./2.)))
assert_array_almost_equal(actual, desired, decimal=14)
class TestHMean(TestCase):
def test_1D(self):
a = (1,2,3,4)
actual= mstats.hmean(a)
desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
actual = mstats.hmean(a)
desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
assert_almost_equal(actual, desired, decimal=14)
desired1 = mstats.hmean(ma.array(a),axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
#
a = ma.array((1,2,3,4),mask=(0,0,0,1))
actual= mstats.hmean(a)
actual = mstats.hmean(a)
desired = 3. / (1./1 + 1./2 + 1./3)
assert_almost_equal(actual, desired,decimal=14)
desired1 = mstats.hmean(a,axis=-1)
@ -91,10 +94,10 @@ class TestHMean(TestCase):
def test_2D(self):
a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
actual= mstats.hmean(a)
actual = mstats.hmean(a)
desired = ma.array((1,2,3,4))
assert_array_almost_equal(actual, desired, decimal=14)
#
actual1 = mstats.hmean(a,axis=-1)
desired = (4./(1/1.+1/2.+1/3.+1/4.),
2./(1/2.+1/3.),
@ -104,10 +107,10 @@ class TestHMean(TestCase):
class TestRanking(TestCase):
#
def __init__(self, *args, **kwargs):
TestCase.__init__(self, *args, **kwargs)
#
def test_ranking(self):
x = ma.array([0,1,1,1,2,3,4,5,5,6,])
assert_almost_equal(mstats.rankdata(x),[1,3,3,3,5,6,7,8.5,8.5,10])
@ -124,44 +127,60 @@ class TestRanking(TestCase):
class TestCorr(TestCase):
#
def test_pearsonr(self):
"Tests some computations of Pearson's r"
# Tests some computations of Pearson's r
x = ma.arange(10)
olderr = np.seterr(all='ignore')
try:
assert_almost_equal(mstats.pearsonr(x,x)[0], 1.0)
assert_almost_equal(mstats.pearsonr(x,x[::-1])[0], -1.0)
with warnings.catch_warnings():
# The tests in this context are edge cases, with perfect
# correlation or anticorrelation, or totally masked data.
# None of these should trigger a RuntimeWarning.
warnings.simplefilter("error", RuntimeWarning)
assert_almost_equal(mstats.pearsonr(x, x)[0], 1.0)
assert_almost_equal(mstats.pearsonr(x, x[::-1])[0], -1.0)
x = ma.array(x, mask=True)
pr = mstats.pearsonr(x,x)
finally:
np.seterr(**olderr)
assert_(pr[0] is masked)
assert_(pr[1] is masked)
#
pr = mstats.pearsonr(x, x)
assert_(pr[0] is masked)
assert_(pr[1] is masked)
x1 = ma.array([-1.0, 0.0, 1.0])
y1 = ma.array([0, 0, 3])
r, p = mstats.pearsonr(x1, y1)
assert_almost_equal(r, np.sqrt(3)/2)
assert_almost_equal(p, 1.0/3)
# (x2, y2) have the same unmasked data as (x1, y1).
mask = [False, False, False, True]
x2 = ma.array([-1.0, 0.0, 1.0, 99.0], mask=mask)
y2 = ma.array([0, 0, 3, -1], mask=mask)
r, p = mstats.pearsonr(x2, y2)
assert_almost_equal(r, np.sqrt(3)/2)
assert_almost_equal(p, 1.0/3)
def test_spearmanr(self):
"Tests some computations of Spearman's rho"
# Tests some computations of Spearman's rho
(x, y) = ([5.05,6.75,3.21,2.66],[1.65,2.64,2.64,6.95])
assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
(x, y) = ([5.05,6.75,3.21,2.66,np.nan],[1.65,2.64,2.64,6.95,np.nan])
(x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
#
x = [ 2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
y = [22.6, 08.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
x = [ 2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan]
y = [22.6, 08.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan]
x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan]
y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan]
(x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
#
def test_kendalltau(self):
"Tests some computations of Kendall's tau"
# Tests some computations of Kendall's tau
x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66,np.nan])
y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan])
z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan])
@ -170,27 +189,26 @@ class TestCorr(TestCase):
assert_almost_equal(np.asarray(mstats.kendalltau(x,z)),
[-0.5477226,0.2785987])
#
x = ma.fix_invalid([ 0, 0, 0, 0,20,20, 0,60, 0,20,
x = ma.fix_invalid([0, 0, 0, 0,20,20, 0,60, 0,20,
10,10, 0,40, 0,20, 0, 0, 0, 0, 0, np.nan])
y = ma.fix_invalid([ 0,80,80,80,10,33,60, 0,67,27,
y = ma.fix_invalid([0,80,80,80,10,33,60, 0,67,27,
25,80,80,80,80,80,80, 0,10,45, np.nan, 0])
result = mstats.kendalltau(x,y)
assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009])
#
def test_kendalltau_seasonal(self):
"Tests the seasonal Kendall tau."
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
[ 4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
[ 3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
# Tests the seasonal Kendall tau.
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
[4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
[3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
x = ma.fix_invalid(x).T
output = mstats.kendalltau_seasonal(x)
assert_almost_equal(output['global p-value (indep)'], 0.008, 3)
assert_almost_equal(output['seasonal p-value'].round(2),
[0.18,0.53,0.20,0.04])
#
def test_pointbiserial(self):
"Tests point biserial"
x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,1,-1]
y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,
@ -200,9 +218,8 @@ class TestCorr(TestCase):
class TestTrimming(TestCase):
#
def test_trim(self):
"Tests trimming"
a = ma.arange(10)
assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9])
a = ma.arange(10)
@ -213,12 +230,12 @@ class TestTrimming(TestCase):
a = ma.arange(10)
assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True),
[None,1,2,3,4,5,6,7,None,None])
#
a = ma.arange(12)
a[[0,-1]] = a[5] = masked
assert_equal(mstats.trim(a,(2,8)),
[None,None,2,3,4,None,6,7,8,None,None,None])
#
x = ma.arange(100).reshape(10,10)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
@ -226,7 +243,7 @@ class TestTrimming(TestCase):
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=-1)
assert_equal(trimx._mask.T.ravel(),[1]*10+[0]*70+[1]*20)
#
x = ma.arange(110).reshape(11,10)
x[1] = masked
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
@ -235,9 +252,8 @@ class TestTrimming(TestCase):
assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
trimx = mstats.trim(x.T,(0.1,0.2),relative=True,axis=-1)
assert_equal(trimx.T._mask.ravel(),[1]*20+[0]*70+[1]*20)
#
def test_trim_old(self):
"Tests trimming."
x = ma.arange(100)
assert_equal(mstats.trimboth(x).count(), 60)
assert_equal(mstats.trimtail(x,tail='r').count(), 80)
@ -249,25 +265,22 @@ class TestTrimming(TestCase):
x.shape = (10,10)
assert_equal(mstats.trimboth(x).count(), 60)
assert_equal(mstats.trimtail(x).count(), 80)
#
def test_trimmedmean(self):
"Tests the trimmed mean."
data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(mstats.trimmed_mean(data,0.1), 343, 0)
assert_almost_equal(mstats.trimmed_mean(data,(0.1,0.1)), 343, 0)
assert_almost_equal(mstats.trimmed_mean(data,(0.2,0.2)), 283, 0)
#
def test_trimmed_stde(self):
"Tests the trimmed mean standard error."
data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(mstats.trimmed_stde(data,(0.2,0.2)), 56.13193, 5)
assert_almost_equal(mstats.trimmed_stde(data,0.2), 56.13193, 5)
#
def test_winsorization(self):
"Tests the Winsorization of the data."
data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(mstats.winsorize(data,(0.2,0.2)).var(ddof=1),
21551.4, 1)
@ -277,21 +290,29 @@ class TestTrimming(TestCase):
class TestMoments(TestCase):
"""
Comparison numbers are found using R v.1.5.1
note that length(testcase) = 4
testmathworks comes from documentation for the
Statistics Toolbox for Matlab and can be found at both
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml
Note that both test cases came from here.
"""
# Comparison numbers are found using R v.1.5.1
# note that length(testcase) = 4
# testmathworks comes from documentation for the
# Statistics Toolbox for Matlab and can be found at both
# http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml
# http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml
# Note that both test cases came from here.
testcase = [1,2,3,4]
testmathworks = ma.fix_invalid([1.165 , 0.6268, 0.0751, 0.3516, -0.6965,
testmathworks = ma.fix_invalid([1.165, 0.6268, 0.0751, 0.3516, -0.6965,
np.nan])
testcase_2d = ma.array(
np.array([[0.05245846, 0.50344235, 0.86589117, 0.36936353, 0.46961149],
[0.11574073, 0.31299969, 0.45925772, 0.72618805, 0.75194407],
[0.67696689, 0.91878127, 0.09769044, 0.04645137, 0.37615733],
[0.05903624, 0.29908861, 0.34088298, 0.66216337, 0.83160998],
[0.64619526, 0.94894632, 0.27855892, 0.0706151, 0.39962917]]),
mask=np.array([[True, False, False, True, False],
[True, True, True, False, True],
[False, False, False, False, False],
[True, True, True, True, True],
[False, False, True, False, False]], dtype=np.bool))
def test_moment(self):
"""
mean((testcase-mean(testcase))**power,axis=0),axis=0))**power))"""
y = mstats.moment(self.testcase,1)
assert_almost_equal(y,0.0,10)
y = mstats.moment(self.testcase,2)
@ -300,17 +321,12 @@ class TestMoments(TestCase):
assert_almost_equal(y,0.0)
y = mstats.moment(self.testcase,4)
assert_almost_equal(y,2.5625)
def test_variation(self):
"""variation = samplestd/mean """
## y = stats.variation(self.shoes[0])
## assert_almost_equal(y,21.8770668)
y = mstats.variation(self.testcase)
assert_almost_equal(y,0.44721359549996, 10)
def test_skewness(self):
"""
sum((testmathworks-mean(testmathworks,axis=0))**3,axis=0)/((sqrt(var(testmathworks)*4/5))**3)/5
"""
y = mstats.skew(self.testmathworks)
assert_almost_equal(y,-0.29322304336607,10)
y = mstats.skew(self.testmathworks,bias=0)
@ -319,38 +335,65 @@ class TestMoments(TestCase):
assert_almost_equal(y,0.0,10)
def test_kurtosis(self):
"""
sum((testcase-mean(testcase,axis=0))**4,axis=0)/((sqrt(var(testcase)*3/4))**4)/4
sum((test2-mean(testmathworks,axis=0))**4,axis=0)/((sqrt(var(testmathworks)*4/5))**4)/5
Set flags for axis = 0 and
fisher=0 (Pearson's definition of kurtosis for compatibility with Matlab)
"""
# Set flags for axis = 0 and fisher=0 (Pearson's definition of kurtosis
# for compatibility with Matlab)
y = mstats.kurtosis(self.testmathworks,0,fisher=0,bias=1)
assert_almost_equal(y, 2.1658856802973,10)
# Note that MATLAB has confusing docs for the following case
# kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
# kurtosis(x) gives a biased estimate of Fisher's skewness (Pearson-3)
# The MATLAB docs imply that both should give Fisher's
y = mstats.kurtosis(self.testmathworks,fisher=0,bias=0)
y = mstats.kurtosis(self.testmathworks,fisher=0, bias=0)
assert_almost_equal(y, 3.663542721189047,10)
y = mstats.kurtosis(self.testcase,0,0)
assert_almost_equal(y,1.64)
#
# test that kurtosis works on multidimensional masked arrays
correct_2d = ma.array(np.array([-1.5, -3., -1.47247052385, 0.,
-1.26979517952]),
mask=np.array([False, False, False, True,
False], dtype=np.bool))
assert_array_almost_equal(mstats.kurtosis(self.testcase_2d, 1),
correct_2d)
for i, row in enumerate(self.testcase_2d):
assert_almost_equal(mstats.kurtosis(row), correct_2d[i])
correct_2d_bias_corrected = ma.array(
np.array([-1.5, -3., -1.88988209538, 0., -0.5234638463918877]),
mask=np.array([False, False, False, True, False], dtype=np.bool))
assert_array_almost_equal(mstats.kurtosis(self.testcase_2d, 1,
bias=False),
correct_2d_bias_corrected)
for i, row in enumerate(self.testcase_2d):
assert_almost_equal(mstats.kurtosis(row, bias=False),
correct_2d_bias_corrected[i])
# Check consistency between stats and mstats implementations
assert_array_almost_equal_nulp(mstats.kurtosis(self.testcase_2d[2, :]),
stats.kurtosis(self.testcase_2d[2, :]))
def test_mode(self):
"Tests the mode"
#
a1 = [0,0,0,1,1,1,2,3,3,3,3,4,5,6,7]
a2 = np.reshape(a1, (3,5))
ma1 = ma.masked_where(ma.array(a1)>2,a1)
ma2 = ma.masked_where(a2>2, a2)
a3 = np.array([1,2,3,4,5,6])
a4 = np.reshape(a3, (3,2))
ma1 = ma.masked_where(ma.array(a1) > 2, a1)
ma2 = ma.masked_where(a2 > 2, a2)
ma3 = ma.masked_where(a3 < 2, a3)
ma4 = ma.masked_where(ma.array(a4) < 2, a4)
assert_equal(mstats.mode(a1, axis=None), (3,4))
assert_equal(mstats.mode(a1, axis=0), (3,4))
assert_equal(mstats.mode(ma1, axis=None), (0,3))
assert_equal(mstats.mode(a2, axis=None), (3,4))
assert_equal(mstats.mode(ma2, axis=None), (0,3))
assert_equal(mstats.mode(a2, axis=0), ([[0,0,0,1,1]],[[1,1,1,1,1]]))
assert_equal(mstats.mode(ma2, axis=0), ([[0,0,0,1,1]],[[1,1,1,1,1]]))
assert_equal(mstats.mode(a3, axis=None), (1,1))
assert_equal(mstats.mode(ma3, axis=None), (2,1))
assert_equal(mstats.mode(a2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]]))
assert_equal(mstats.mode(ma2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]]))
assert_equal(mstats.mode(a2, axis=-1), ([[0],[3],[3]], [[3],[3],[1]]))
assert_equal(mstats.mode(ma2, axis=-1), ([[0],[1],[0]], [[3],[1],[0]]))
assert_equal(mstats.mode(ma4, axis=0), ([[3,2]], [[1,1]]))
assert_equal(mstats.mode(ma4, axis=-1), ([[2],[3],[5]], [[1],[1],[1]]))
class TestPercentile(TestCase):
@ -381,76 +424,63 @@ class TestVariability(TestCase):
testcase = ma.fix_invalid([1,2,3,4,np.nan])
def test_signaltonoise(self):
"""
this is not in R, so used
mean(testcase,axis=0)/(sqrt(var(testcase)*3/4)) """
#y = stats.signaltonoise(self.shoes[0])
#assert_approx_equal(y,4.5709967)
# This is not in R, so used:
# mean(testcase, axis=0) / (sqrt(var(testcase)*3/4))
y = mstats.signaltonoise(self.testcase)
assert_almost_equal(y,2.236067977)
def test_sem(self):
"""
this is not in R, so used
sqrt(var(testcase)*3/4)/sqrt(3)
"""
#y = stats.sem(self.shoes[0])
#assert_approx_equal(y,0.775177399)
# This is not in R, so used: sqrt(var(testcase)*3/4) / sqrt(3)
y = mstats.sem(self.testcase)
assert_almost_equal(y,0.6454972244)
assert_almost_equal(y, 0.6454972244)
n = self.testcase.count()
assert_allclose(mstats.sem(self.testcase, ddof=0) * np.sqrt(n/(n-2)),
mstats.sem(self.testcase, ddof=2))
def test_zmap(self):
"""
not in R, so tested by using
(testcase[i]-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
"""
# This is not in R, so tested by using:
# (testcase[i]-mean(testcase,axis=0)) / sqrt(var(testcase)*3/4)
y = mstats.zmap(self.testcase, self.testcase)
desired_unmaskedvals = ([-1.3416407864999, -0.44721359549996 ,
0.44721359549996 , 1.3416407864999])
desired_unmaskedvals = ([-1.3416407864999, -0.44721359549996,
0.44721359549996, 1.3416407864999])
assert_array_almost_equal(desired_unmaskedvals,
y.data[y.mask==False], decimal=12)
y.data[y.mask == False], decimal=12)
def test_zscore(self):
"""
not in R, so tested by using
(testcase[i]-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
"""
# This is not in R, so tested by using:
# (testcase[i]-mean(testcase,axis=0)) / sqrt(var(testcase)*3/4)
y = mstats.zscore(self.testcase)
desired = ma.fix_invalid([-1.3416407864999, -0.44721359549996 ,
0.44721359549996 , 1.3416407864999, np.nan])
desired = ma.fix_invalid([-1.3416407864999, -0.44721359549996,
0.44721359549996, 1.3416407864999, np.nan])
assert_almost_equal(desired, y, decimal=12)
class TestMisc(TestCase):
#
def test_obrientransform(self):
"Tests Obrien transform"
args = [[5]*5+[6]*11+[7]*9+[8]*3+[9]*2+[10]*2,
[6]+[7]*2+[8]*4+[9]*9+[10]*16]
result = [5*[3.1828]+11*[0.5591]+9*[0.0344]+3*[1.6086]+2*[5.2817]+2*[11.0538],
[10.4352]+2*[4.8599]+4*[1.3836]+9*[0.0061]+16*[0.7277]]
assert_almost_equal(np.round(mstats.obrientransform(*args).T,4),
result,4)
#
def test_kstwosamp(self):
"Tests the Kolmogorov-Smirnov 2 samples test"
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
[ 4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
[ 3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
[4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
[3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
x = ma.fix_invalid(x).T
(winter,spring,summer,fall) = x.T
#
assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring),4),
(0.1818,0.9892))
assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'g'),4),
(0.1469,0.7734))
assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'l'),4),
(0.1818,0.6744))
#
def test_friedmanchisq(self):
"Tests the Friedman Chi-square test"
# No missing values
args = ([9.0,9.5,5.0,7.5,9.5,7.5,8.0,7.0,8.5,6.0],
[7.0,6.5,7.0,7.5,5.0,8.0,6.0,6.5,7.0,7.0],
@ -459,10 +489,10 @@ class TestMisc(TestCase):
assert_almost_equal(result[0], 10.4737, 4)
assert_almost_equal(result[1], 0.005317, 6)
# Missing values
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
[ 4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
[ 3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
[4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
[3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
x = ma.fix_invalid(x)
result = mstats.friedmanchisquare(*x)
assert_almost_equal(result[0], 2.0156, 4)
@ -470,7 +500,7 @@ class TestMisc(TestCase):
def test_regress_simple():
"""Regress a line with sinusoidal noise. Test for #1273."""
# Regress a line with sinusoidal noise. Test for #1273.
x = np.linspace(0, 100, 100)
y = 0.2 * np.linspace(0, 100, 100) + 10
y += np.sin(np.linspace(0, 20, 100))
@ -481,10 +511,147 @@ def test_regress_simple():
def test_plotting_positions():
"""Regression test for #1256"""
# Regression test for #1256
pos = mstats.plotting_positions(np.arange(3), 0, 0)
assert_array_almost_equal(pos.data, np.array([0.25, 0.5, 0.75]))
class TestNormalitytests():
def test_vs_nonmasked(self):
x = np.array((-2,-1,0,1,2,3)*4)**2
assert_array_almost_equal(mstats.normaltest(x), stats.normaltest(x))
assert_array_almost_equal(mstats.skewtest(x), stats.skewtest(x))
assert_array_almost_equal(mstats.kurtosistest(x),
stats.kurtosistest(x))
funcs = [stats.normaltest, stats.skewtest, stats.kurtosistest]
mfuncs = [mstats.normaltest, mstats.skewtest, mstats.kurtosistest]
x = [1, 2, 3, 4]
for func, mfunc in zip(funcs, mfuncs):
assert_raises(ValueError, func, x)
assert_raises(ValueError, mfunc, x)
def test_axis_None(self):
# Test axis=None (equal to axis=0 for 1-D input)
x = np.array((-2,-1,0,1,2,3)*4)**2
assert_allclose(mstats.normaltest(x, axis=None), mstats.normaltest(x))
assert_allclose(mstats.skewtest(x, axis=None), mstats.skewtest(x))
assert_allclose(mstats.kurtosistest(x, axis=None),
mstats.kurtosistest(x))
def test_maskedarray_input(self):
# Add some masked values, test result doesn't change
x = np.array((-2,-1,0,1,2,3)*4)**2
xm = np.ma.array(np.r_[np.inf, x, 10],
mask=np.r_[True, [False] * x.size, True])
assert_allclose(mstats.normaltest(xm), stats.normaltest(x))
assert_allclose(mstats.skewtest(xm), stats.skewtest(x))
assert_allclose(mstats.kurtosistest(xm), stats.kurtosistest(x))
def test_nd_input(self):
x = np.array((-2,-1,0,1,2,3)*4)**2
x_2d = np.vstack([x] * 2).T
for func in [mstats.normaltest, mstats.skewtest, mstats.kurtosistest]:
res_1d = func(x)
res_2d = func(x_2d)
assert_allclose(res_2d[0], [res_1d[0]] * 2)
assert_allclose(res_2d[1], [res_1d[1]] * 2)
#TODO: for all ttest functions, add tests with masked array inputs
class TestTtest_rel():
def test_vs_nonmasked(self):
np.random.seed(1234567)
outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
# 1-D inputs
res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1])
res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1])
assert_allclose(res1, res2)
# 2-D inputs
res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None)
res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None)
assert_allclose(res1, res2)
res1 = stats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0)
res2 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0)
assert_allclose(res1, res2)
# Check default is axis=0
res3 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:])
assert_allclose(res2, res3)
def test_invalid_input_size(self):
assert_raises(ValueError, mstats.ttest_rel,
np.arange(10), np.arange(11))
x = np.arange(24)
assert_raises(ValueError, mstats.ttest_rel,
x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=1)
assert_raises(ValueError, mstats.ttest_rel,
x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=2)
def test_empty(self):
res1 = mstats.ttest_rel([], [])
assert_(np.all(np.isnan(res1)))
class TestTtest_ind():
def test_vs_nonmasked(self):
np.random.seed(1234567)
outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
# 1-D inputs
res1 = stats.ttest_ind(outcome[:, 0], outcome[:, 1])
res2 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1])
assert_allclose(res1, res2)
# 2-D inputs
res1 = stats.ttest_ind(outcome[:, 0], outcome[:, 1], axis=None)
res2 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1], axis=None)
assert_allclose(res1, res2)
res1 = stats.ttest_ind(outcome[:, :2], outcome[:, 2:], axis=0)
res2 = mstats.ttest_ind(outcome[:, :2], outcome[:, 2:], axis=0)
assert_allclose(res1, res2)
# Check default is axis=0
res3 = mstats.ttest_ind(outcome[:, :2], outcome[:, 2:])
assert_allclose(res2, res3)
def test_empty(self):
res1 = mstats.ttest_ind([], [])
assert_(np.all(np.isnan(res1)))
class TestTtest_1samp():
def test_vs_nonmasked(self):
np.random.seed(1234567)
outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
# 1-D inputs
res1 = stats.ttest_1samp(outcome[:, 0], 1)
res2 = mstats.ttest_1samp(outcome[:, 0], 1)
assert_allclose(res1, res2)
# 2-D inputs
res1 = stats.ttest_1samp(outcome[:, 0], outcome[:, 1], axis=None)
res2 = mstats.ttest_1samp(outcome[:, 0], outcome[:, 1], axis=None)
assert_allclose(res1, res2)
res1 = stats.ttest_1samp(outcome[:, :2], outcome[:, 2:], axis=0)
res2 = mstats.ttest_1samp(outcome[:, :2], outcome[:, 2:], axis=0)
assert_allclose(res1, res2)
# Check default is axis=0
res3 = mstats.ttest_1samp(outcome[:, :2], outcome[:, 2:])
assert_allclose(res2, res3)
def test_empty(self):
res1 = mstats.ttest_1samp([], 1)
assert_(np.all(np.isnan(res1)))
if __name__ == "__main__":
run_module_suite()

@ -4,30 +4,32 @@
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
"""
from __future__ import division, print_function, absolute_import
__author__ = "Pierre GF Gerard-Marchant ($Author: backtopop $)"
import numpy as np
import numpy.ma as ma
import scipy.stats.mstats as ms
#import scipy.stats.mmorestats as mms
import wafo.stats.mstats as ms
#import wafo.stats.mmorestats as mms
from numpy.testing import TestCase, run_module_suite, assert_equal, \
assert_almost_equal, assert_
class TestMisc(TestCase):
#
def __init__(self, *args, **kwargs):
TestCase.__init__(self, *args, **kwargs)
#
def test_mjci(self):
"Tests the Marits-Jarrett estimator"
data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(ms.mjci(data),[55.76819,45.84028,198.87875],5)
#
def test_trimmedmeanci(self):
"Tests the confidence intervals of the trimmed mean."
data = ma.array([545,555,558,572,575,576,578,580,
@ -35,7 +37,7 @@ class TestMisc(TestCase):
assert_almost_equal(ms.trimmed_mean(data,0.2), 596.2, 1)
assert_equal(np.round(ms.trimmed_mean_ci(data,(0.2,0.2)),1),
[561.8, 630.6])
#
def test_idealfourths(self):
"Tests ideal-fourths"
test = np.arange(100)
@ -52,11 +54,13 @@ class TestMisc(TestCase):
assert_(np.isnan(_result).all())
#..............................................................................
class TestQuantiles(TestCase):
#
def __init__(self, *args, **kwargs):
TestCase.__init__(self, *args, **kwargs)
#
def test_hdquantiles(self):
data = [0.706560797,0.727229578,0.990399276,0.927065621,0.158953014,
0.887764025,0.239407086,0.349638551,0.972791145,0.149789972,

@ -0,0 +1,275 @@
"""
Test functions for multivariate normal distributions.
"""
from __future__ import division, print_function, absolute_import
from numpy.testing import (assert_almost_equal,
run_module_suite, assert_allclose, assert_equal, assert_raises)
import numpy
import numpy as np
import scipy.linalg
import scipy.stats._multivariate
from scipy.stats import multivariate_normal
from scipy.stats import norm
from scipy.stats._multivariate import _psd_pinv_decomposed_log_pdet
from scipy.integrate import romb
def test_scalar_values():
np.random.seed(1234)
# When evaluated on scalar data, the pdf should return a scalar
x, mean, cov = 1.5, 1.7, 2.5
pdf = multivariate_normal.pdf(x, mean, cov)
assert_equal(pdf.ndim, 0)
# When evaluated on a single vector, the pdf should return a scalar
x = np.random.randn(5)
mean = np.random.randn(5)
cov = np.abs(np.random.randn(5)) # Diagonal values for cov. matrix
pdf = multivariate_normal.pdf(x, mean, cov)
assert_equal(pdf.ndim, 0)
def test_logpdf():
# Check that the log of the pdf is in fact the logpdf
np.random.seed(1234)
x = np.random.randn(5)
mean = np.random.randn(5)
cov = np.abs(np.random.randn(5))
d1 = multivariate_normal.logpdf(x, mean, cov)
d2 = multivariate_normal.pdf(x, mean, cov)
assert_allclose(d1, np.log(d2))
def test_large_pseudo_determinant():
# Check that large pseudo-determinants are handled appropriately.
# Construct a singular diagonal covariance matrix
# whose pseudo determinant overflows double precision.
large_total_log = 1000.0
npos = 100
nzero = 2
large_entry = np.exp(large_total_log / npos)
n = npos + nzero
cov = np.zeros((n, n), dtype=float)
np.fill_diagonal(cov, large_entry)
cov[-nzero:, -nzero:] = 0
# Check some determinants.
assert_equal(scipy.linalg.det(cov), 0)
assert_equal(scipy.linalg.det(cov[:npos, :npos]), np.inf)
# np.linalg.slogdet is only available in numpy 1.6+
# but scipy currently supports numpy 1.5.1.
#assert_allclose(np.linalg.slogdet(cov[:npos, :npos]), (1, large_total_log))
# Check the pseudo-determinant.
U, log_pdet = scipy.stats._multivariate._psd_pinv_decomposed_log_pdet(cov)
assert_allclose(log_pdet, large_total_log)
def test_broadcasting():
np.random.seed(1234)
n = 4
# Construct a random covariance matrix.
data = np.random.randn(n, n)
cov = np.dot(data, data.T)
mean = np.random.randn(n)
# Construct an ndarray which can be interpreted as
# a 2x3 array whose elements are random data vectors.
X = np.random.randn(2, 3, n)
# Check that multiple data points can be evaluated at once.
for i in range(2):
for j in range(3):
actual = multivariate_normal.pdf(X[i, j], mean, cov)
desired = multivariate_normal.pdf(X, mean, cov)[i, j]
assert_allclose(actual, desired)
def test_normal_1D():
# The probability density function for a 1D normal variable should
# agree with the standard normal distribution in scipy.stats.distributions
x = np.linspace(0, 2, 10)
mean, cov = 1.2, 0.9
scale = cov**0.5
d1 = norm.pdf(x, mean, scale)
d2 = multivariate_normal.pdf(x, mean, cov)
assert_allclose(d1, d2)
def test_marginalization():
# Integrating out one of the variables of a 2D Gaussian should
# yield a 1D Gaussian
mean = np.array([2.5, 3.5])
cov = np.array([[.5, 0.2], [0.2, .6]])
n = 2**8 + 1 # Number of samples
delta = 6 / (n - 1) # Grid spacing
v = np.linspace(0, 6, n)
xv, yv = np.meshgrid(v, v)
pos = np.empty((n, n, 2))
pos[:, :, 0] = xv
pos[:, :, 1] = yv
pdf = multivariate_normal.pdf(pos, mean, cov)
# Marginalize over x and y axis
margin_x = romb(pdf, delta, axis=0)
margin_y = romb(pdf, delta, axis=1)
# Compare with standard normal distribution
gauss_x = norm.pdf(v, loc=mean[0], scale=cov[0, 0]**0.5)
gauss_y = norm.pdf(v, loc=mean[1], scale=cov[1, 1]**0.5)
assert_allclose(margin_x, gauss_x, rtol=1e-2, atol=1e-2)
assert_allclose(margin_y, gauss_y, rtol=1e-2, atol=1e-2)
def test_frozen():
# The frozen distribution should agree with the regular one
np.random.seed(1234)
x = np.random.randn(5)
mean = np.random.randn(5)
cov = np.abs(np.random.randn(5))
norm_frozen = multivariate_normal(mean, cov)
assert_allclose(norm_frozen.pdf(x), multivariate_normal.pdf(x, mean, cov))
assert_allclose(norm_frozen.logpdf(x),
multivariate_normal.logpdf(x, mean, cov))
def test_pseudodet_pinv():
# Make sure that pseudo-inverse and pseudo-det agree on cutoff
# Assemble random covariance matrix with large and small eigenvalues
np.random.seed(1234)
n = 7
x = np.random.randn(n, n)
cov = np.dot(x, x.T)
s, u = scipy.linalg.eigh(cov)
s = 0.5 * np.ones(n)
s[0] = 1.0
s[-1] = 1e-7
cov = np.dot(u, np.dot(np.diag(s), u.T))
# Set cond so that the lowest eigenvalue is below the cutoff
cond = 1e-5
U, log_pdet = _psd_pinv_decomposed_log_pdet(cov, cond)
pinv = np.dot(U, U.T)
_, log_pdet_pinv = _psd_pinv_decomposed_log_pdet(pinv, cond)
# Check that the log pseudo-determinant agrees with the sum
# of the logs of all but the smallest eigenvalue
assert_allclose(log_pdet, np.sum(np.log(s[:-1])))
# Check that the pseudo-determinant of the pseudo-inverse
# agrees with 1 / pseudo-determinant
assert_allclose(-log_pdet, log_pdet_pinv)
def test_exception_nonsquare_cov():
cov = [[1, 2, 3], [4, 5, 6]]
assert_raises(ValueError, _psd_pinv_decomposed_log_pdet, cov)
def test_exception_nonfinite_cov():
cov_nan = [[1, 0], [0, np.nan]]
assert_raises(ValueError, _psd_pinv_decomposed_log_pdet, cov_nan)
cov_inf = [[1, 0], [0, np.inf]]
assert_raises(ValueError, _psd_pinv_decomposed_log_pdet, cov_inf)
def test_exception_non_psd_cov():
cov = [[1, 0], [0, -1]]
assert_raises(ValueError, _psd_pinv_decomposed_log_pdet, cov)
def test_R_values():
# Compare the multivariate pdf with some values precomputed
# in R version 3.0.1 (2013-05-16) on Mac OS X 10.6.
# The values below were generated by the following R-script:
# > library(mnormt)
# > x <- seq(0, 2, length=5)
# > y <- 3*x - 2
# > z <- x + cos(y)
# > mu <- c(1, 3, 2)
# > Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
# > r_pdf <- dmnorm(cbind(x,y,z), mu, Sigma)
r_pdf = np.array([0.0002214706, 0.0013819953, 0.0049138692,
0.0103803050, 0.0140250800])
x = np.linspace(0, 2, 5)
y = 3 * x - 2
z = x + np.cos(y)
r = np.array([x, y, z]).T
mean = np.array([1, 3, 2], 'd')
cov = np.array([[1, 2, 0], [2, 5, .5], [0, .5, 3]], 'd')
pdf = multivariate_normal.pdf(r, mean, cov)
assert_allclose(pdf, r_pdf, atol=1e-10)
def test_rvs_shape():
# Check that rvs parses the mean and covariance correctly, and returns
# an array of the right shape
N = 300
d = 4
sample = multivariate_normal.rvs(mean=np.zeros(d), cov=1, size=N)
assert_equal(sample.shape, (N, d))
sample = multivariate_normal.rvs(mean=None,
cov=np.array([[2, .1], [.1, 1]]),
size=N)
assert_equal(sample.shape, (N, 2))
u = multivariate_normal(mean=0, cov=1)
sample = u.rvs(N)
assert_equal(sample.shape, (N, ))
def test_large_sample():
# Generate large sample and compare sample mean and sample covariance
# with mean and covariance matrix.
np.random.seed(2846)
n = 3
mean = np.random.randn(n)
M = np.random.randn(n, n)
cov = np.dot(M, M.T)
size = 5000
sample = multivariate_normal.rvs(mean, cov, size)
assert_allclose(numpy.cov(sample.T), cov, rtol=1e-1)
assert_allclose(sample.mean(0), mean, rtol=1e-1)
def test_entropy():
np.random.seed(2846)
n = 3
mean = np.random.randn(n)
M = np.random.randn(n, n)
cov = np.dot(M, M.T)
rv = multivariate_normal(mean, cov)
# Check that frozen distribution agrees with entropy function
assert_almost_equal(rv.entropy(), multivariate_normal.entropy(mean, cov))
# Compare entropy with manually computed expression involving
# the sum of the logs of the eigenvalues of the covariance matrix
eigs = np.linalg.eig(cov)[0]
desired = 1/2 * (n * (np.log(2*np.pi) + 1) + np.sum(np.log(eigs)))
assert_almost_equal(desired, rv.entropy())
if __name__ == "__main__":
run_module_suite()

@ -0,0 +1,193 @@
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import TestCase, run_module_suite, assert_equal, \
assert_array_equal
from scipy.stats import rankdata, tiecorrect
class TestTieCorrect(TestCase):
def test_empty(self):
"""An empty array requires no correction, should return 1.0."""
ranks = np.array([], dtype=np.float64)
c = tiecorrect(ranks)
assert_equal(c, 1.0)
def test_one(self):
"""A single element requires no correction, should return 1.0."""
ranks = np.array([1.0], dtype=np.float64)
c = tiecorrect(ranks)
assert_equal(c, 1.0)
def test_no_correction(self):
"""Arrays with no ties require no correction."""
ranks = np.arange(2.0)
c = tiecorrect(ranks)
assert_equal(c, 1.0)
ranks = np.arange(3.0)
c = tiecorrect(ranks)
assert_equal(c, 1.0)
def test_basic(self):
"""Check a few basic examples of the tie correction factor."""
# One tie of two elements
ranks = np.array([1.0, 2.5, 2.5])
c = tiecorrect(ranks)
T = 2.0
N = ranks.size
expected = 1.0 - (T**3 - T) / (N**3 - N)
assert_equal(c, expected)
# One tie of two elements (same as above, but tie is not at the end)
ranks = np.array([1.5, 1.5, 3.0])
c = tiecorrect(ranks)
T = 2.0
N = ranks.size
expected = 1.0 - (T**3 - T) / (N**3 - N)
assert_equal(c, expected)
# One tie of three elements
ranks = np.array([1.0, 3.0, 3.0, 3.0])
c = tiecorrect(ranks)
T = 3.0
N = ranks.size
expected = 1.0 - (T**3 - T) / (N**3 - N)
assert_equal(c, expected)
# Two ties, lengths 2 and 3.
ranks = np.array([1.5, 1.5, 4.0, 4.0, 4.0])
c = tiecorrect(ranks)
T1 = 2.0
T2 = 3.0
N = ranks.size
expected = 1.0 - ((T1**3 - T1) + (T2**3 - T2)) / (N**3 - N)
assert_equal(c, expected)
class TestRankData(TestCase):
def test_empty(self):
"""stats.rankdata([]) should return an empty array."""
a = np.array([], dtype=np.int)
r = rankdata(a)
assert_array_equal(r, np.array([], dtype=np.float64))
r = rankdata([])
assert_array_equal(r, np.array([], dtype=np.float64))
def test_one(self):
"""Check stats.rankdata with an array of length 1."""
data = [100]
a = np.array(data, dtype=np.int)
r = rankdata(a)
assert_array_equal(r, np.array([1.0], dtype=np.float64))
r = rankdata(data)
assert_array_equal(r, np.array([1.0], dtype=np.float64))
def test_basic(self):
"""Basic tests of stats.rankdata."""
data = [100, 10, 50]
expected = np.array([3.0, 1.0, 2.0], dtype=np.float64)
a = np.array(data, dtype=np.int)
r = rankdata(a)
assert_array_equal(r, expected)
r = rankdata(data)
assert_array_equal(r, expected)
data = [40, 10, 30, 10, 50]
expected = np.array([4.0, 1.5, 3.0, 1.5, 5.0], dtype=np.float64)
a = np.array(data, dtype=np.int)
r = rankdata(a)
assert_array_equal(r, expected)
r = rankdata(data)
assert_array_equal(r, expected)
data = [20, 20, 20, 10, 10, 10]
expected = np.array([5.0, 5.0, 5.0, 2.0, 2.0, 2.0], dtype=np.float64)
a = np.array(data, dtype=np.int)
r = rankdata(a)
assert_array_equal(r, expected)
r = rankdata(data)
assert_array_equal(r, expected)
# The docstring states explicitly that the argument is flattened.
a2d = a.reshape(2, 3)
r = rankdata(a2d)
assert_array_equal(r, expected)
def test_large_int(self):
data = np.array([2**60, 2**60+1], dtype=np.uint64)
r = rankdata(data)
assert_array_equal(r, [1.0, 2.0])
data = np.array([2**60, 2**60+1], dtype=np.int64)
r = rankdata(data)
assert_array_equal(r, [1.0, 2.0])
data = np.array([2**60, -2**60+1], dtype=np.int64)
r = rankdata(data)
assert_array_equal(r, [2.0, 1.0])
def test_big_tie(self):
for n in [10000, 100000, 1000000]:
data = np.ones(n, dtype=int)
r = rankdata(data)
expected_rank = 0.5 * (n + 1)
assert_array_equal(r, expected_rank * data,
"test failed with n=%d" % n)
_cases = (
# values, method, expected
([], 'average', []),
([], 'min', []),
([], 'max', []),
([], 'dense', []),
([], 'ordinal', []),
#
([100], 'average', [1.0]),
([100], 'min', [1.0]),
([100], 'max', [1.0]),
([100], 'dense', [1.0]),
([100], 'ordinal', [1.0]),
#
([100, 100, 100], 'average', [2.0, 2.0, 2.0]),
([100, 100, 100], 'min', [1.0, 1.0, 1.0]),
([100, 100, 100], 'max', [3.0, 3.0, 3.0]),
([100, 100, 100], 'dense', [1.0, 1.0, 1.0]),
([100, 100, 100], 'ordinal', [1.0, 2.0, 3.0]),
#
([100, 300, 200], 'average', [1.0, 3.0, 2.0]),
([100, 300, 200], 'min', [1.0, 3.0, 2.0]),
([100, 300, 200], 'max', [1.0, 3.0, 2.0]),
([100, 300, 200], 'dense', [1.0, 3.0, 2.0]),
([100, 300, 200], 'ordinal', [1.0, 3.0, 2.0]),
#
([100, 200, 300, 200], 'average', [1.0, 2.5, 4.0, 2.5]),
([100, 200, 300, 200], 'min', [1.0, 2.0, 4.0, 2.0]),
([100, 200, 300, 200], 'max', [1.0, 3.0, 4.0, 3.0]),
([100, 200, 300, 200], 'dense', [1.0, 2.0, 3.0, 2.0]),
([100, 200, 300, 200], 'ordinal', [1.0, 2.0, 4.0, 3.0]),
#
([100, 200, 300, 200, 100], 'average', [1.5, 3.5, 5.0, 3.5, 1.5]),
([100, 200, 300, 200, 100], 'min', [1.0, 3.0, 5.0, 3.0, 1.0]),
([100, 200, 300, 200, 100], 'max', [2.0, 4.0, 5.0, 4.0, 2.0]),
([100, 200, 300, 200, 100], 'dense', [1.0, 2.0, 3.0, 2.0, 1.0]),
([100, 200, 300, 200, 100], 'ordinal', [1.0, 3.0, 5.0, 4.0, 2.0]),
#
([10] * 30, 'ordinal', np.arange(1.0, 31.0)),
)
def test_cases():
def check_case(values, method, expected):
r = rankdata(values, method=method)
assert_array_equal(r, expected)
for values, method, expected in _cases:
yield check_case, values, method, expected
if __name__ == "__main__":
run_module_suite()

File diff suppressed because it is too large Load Diff

@ -0,0 +1,91 @@
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import assert_allclose, assert_equal, run_module_suite
from scipy.stats._tukeylambda_stats import tukeylambda_variance, \
tukeylambda_kurtosis
def test_tukeylambda_stats_known_exact():
"""Compare results with some known exact formulas."""
# Some exact values of the Tukey Lambda variance and kurtosis:
# lambda var kurtosis
# 0 pi**2/3 6/5 (logistic distribution)
# 0.5 4 - pi (5/3 - pi/2)/(pi/4 - 1)**2 - 3
# 1 1/3 -6/5 (uniform distribution on (-1,1))
# 2 1/12 -6/5 (uniform distribution on (-1/2, 1/2))
# lambda = 0
var = tukeylambda_variance(0)
assert_allclose(var, np.pi**2 / 3, atol=1e-12)
kurt = tukeylambda_kurtosis(0)
assert_allclose(kurt, 1.2, atol=1e-10)
# lambda = 0.5
var = tukeylambda_variance(0.5)
assert_allclose(var, 4 - np.pi, atol=1e-12)
kurt = tukeylambda_kurtosis(0.5)
desired = (5./3 - np.pi/2) / (np.pi/4 - 1)**2 - 3
assert_allclose(kurt, desired, atol=1e-10)
# lambda = 1
var = tukeylambda_variance(1)
assert_allclose(var, 1.0 / 3, atol=1e-12)
kurt = tukeylambda_kurtosis(1)
assert_allclose(kurt, -1.2, atol=1e-10)
# lambda = 2
var = tukeylambda_variance(2)
assert_allclose(var, 1.0 / 12, atol=1e-12)
kurt = tukeylambda_kurtosis(2)
assert_allclose(kurt, -1.2, atol=1e-10)
def test_tukeylambda_stats_mpmath():
"""Compare results with some values that were computed using mpmath."""
a10 = dict(atol=1e-10, rtol=0)
a12 = dict(atol=1e-12, rtol=0)
data = [
# lambda variance kurtosis
[-0.1, 4.78050217874253547, 3.78559520346454510],
[-0.0649, 4.16428023599895777, 2.52019675947435718],
[-0.05, 3.93672267890775277, 2.13129793057777277],
[-0.001, 3.30128380390964882, 1.21452460083542988],
[0.001, 3.27850775649572176, 1.18560634779287585],
[0.03125, 2.95927803254615800, 0.804487555161819980],
[0.05, 2.78281053405464501, 0.611604043886644327],
[0.0649, 2.65282386754100551, 0.476834119532774540],
[1.2, 0.242153920578588346, -1.23428047169049726],
[10.0, 0.00095237579757703597, 2.37810697355144933],
[20.0, 0.00012195121951131043, 7.37654321002709531],
]
for lam, var_expected, kurt_expected in data:
var = tukeylambda_variance(lam)
assert_allclose(var, var_expected, **a12)
kurt = tukeylambda_kurtosis(lam)
assert_allclose(kurt, kurt_expected, **a10)
# Test with vector arguments (most of the other tests are for single
# values).
lam, var_expected, kurt_expected = zip(*data)
var = tukeylambda_variance(lam)
assert_allclose(var, var_expected, **a12)
kurt = tukeylambda_kurtosis(lam)
assert_allclose(kurt, kurt_expected, **a10)
def test_tukeylambda_stats_invalid():
"""Test values of lambda outside the domains of the functions."""
lam = [-1.0, -0.5]
var = tukeylambda_variance(lam)
assert_equal(var, np.array([np.nan, np.inf]))
lam = [-1.0, -0.25]
kurt = tukeylambda_kurtosis(lam)
assert_equal(kurt, np.array([np.nan, np.inf]))
if __name__ == "__main__":
run_module_suite()

@ -0,0 +1,47 @@
from __future__ import division, print_function, absolute_import
import numpy as np
import scipy.stats
from scipy.special import i0
def von_mises_cdf_series(k,x,p):
x = float(x)
s = np.sin(x)
c = np.cos(x)
sn = np.sin(p*x)
cn = np.cos(p*x)
R = 0
V = 0
for n in range(p-1,0,-1):
sn, cn = sn*c - cn*s, cn*c + sn*s
R = 1./(2*n/k + R)
V = R*(sn/n+V)
return 0.5+x/(2*np.pi) + V/np.pi
def von_mises_cdf_normalapprox(k,x,C1):
b = np.sqrt(2/np.pi)*np.exp(k)/i0(k)
z = b*np.sin(x/2.)
return scipy.stats.norm.cdf(z)
def von_mises_cdf(k,x):
ix = 2*np.pi*np.round(x/(2*np.pi))
x = x-ix
k = float(k)
# These values should give 12 decimal digits
CK = 50
a = [28., 0.5, 100., 5.0]
C1 = 50.1
if k < CK:
p = int(np.ceil(a[0]+a[1]*k-a[2]/(k+a[3])))
F = np.clip(von_mises_cdf_series(k,x,p),0,1)
else:
F = von_mises_cdf_normalapprox(k,x,C1)
return F+ix

@ -0,0 +1,76 @@
import numpy as np
import scipy.stats
from scipy.special import i0
import numpy.testing
cimport numpy as np
cdef extern from "math.h":
double cos(double theta)
double sin(double theta)
cdef double von_mises_cdf_series(double k,double x,unsigned int p):
cdef double s, c, sn, cn, R, V
cdef unsigned int n
s = sin(x)
c = cos(x)
sn = sin(p*x)
cn = cos(p*x)
R = 0
V = 0
for n in range(p-1,0,-1):
sn, cn = sn*c - cn*s, cn*c + sn*s
R = 1./(2*n/k + R)
V = R*(sn/n+V)
return 0.5+x/(2*np.pi) + V/np.pi
def von_mises_cdf_normalapprox(k,x,C1):
b = np.sqrt(2/np.pi)*np.exp(k)/i0(k)
z = b*np.sin(x/2.)
C = 24*k
chi = z - z**3/((C-2*z**2-16)/3.-(z**4+7/4.*z**2+167./2)/(C+C1-z**2+3))**2
return scipy.stats.norm.cdf(z)
cimport cython
@cython.boundscheck(False)
def von_mises_cdf(k,x):
cdef np.ndarray[double, ndim=1] temp, temp_xs, temp_ks
cdef unsigned int i, p
cdef double a1, a2, a3, a4, C1, CK
#k,x = np.broadcast_arrays(np.asarray(k),np.asarray(x))
k = np.asarray(k)
x = np.asarray(x)
zerodim = k.ndim==0 and x.ndim==0
k = np.atleast_1d(k)
x = np.atleast_1d(x)
ix = np.round(x/(2*np.pi))
x = x-ix*2*np.pi
# These values should give 12 decimal digits
CK=50
a1, a2, a3, a4 = [28., 0.5, 100., 5.0]
C1 = 50.1
bx, bk = np.broadcast_arrays(x,k)
result = np.empty(bx.shape,dtype=np.float)
c_small_k = bk<CK
temp = result[c_small_k]
temp_xs = bx[c_small_k].astype(np.float)
temp_ks = bk[c_small_k].astype(np.float)
for i in range(len(temp)):
p = <int>(1+a1+a2*temp_ks[i]-a3/(temp_ks[i]+a4))
temp[i] = von_mises_cdf_series(temp_ks[i],temp_xs[i],p)
if temp[i]<0:
temp[i]=0
elif temp[i]>1:
temp[i]=1
result[c_small_k] = temp
result[~c_small_k] = von_mises_cdf_normalapprox(bk[~c_small_k],bx[~c_small_k],C1)
if not zerodim:
return result+ix
else:
return (result+ix)[0]
Loading…
Cancel
Save