Added KDE.eval_grid and KDE.eval_grid_fast

master
per.andreas.brodtkorb 14 years ago
parent 39023b0ef8
commit 69dd04d787

@ -117,18 +117,28 @@ class TKDE(object):
t = np.trapz(f, x) t = np.trapz(f, x)
""" """
def __init__(self, dataset, hs=None, kernel=None, alpha=0.0, L2=None): def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None,
self.dataset = atleast_2d(dataset) xmax=None, inc=128, L2=None):
self.dataset = atleast_2d(data)
self.hs = hs self.hs = hs
self.kernel = kernel self.kernel = kernel if kernel else Kernel('gauss')
self.alpha = alpha self.alpha = alpha
self.xmin = xmin
self.xmax = xmax
self.L2 = L2 self.L2 = L2
self.d, self.n = self.dataset.shape self.d, self.n = self.dataset.shape
self.initialize() self.initialize()
def initialize(self): def initialize(self):
tdataset = self._dat2gaus(self.dataset) tdataset = self._dat2gaus(self.dataset)
self.kde = KDE(tdataset, self.hs, self.kernel, self.alpha) xmin = self.xmin
if xmin is not None:
xmin = self._dat2gaus(xmin)
xmax = self.xmax
if xmax is not None:
xmax = self._dat2gaus(xmax)
self.kde = KDE(tdataset, self.hs, self.kernel, self.alpha, xmin, xmax,
self.inc)
def _check_shape(self, points): def _check_shape(self, points):
points = atleast_2d(points) points = atleast_2d(points)
@ -202,7 +212,7 @@ class KDE(object):
Parameters Parameters
---------- ----------
dataset : (# of dims, # of data)-array data : (# of dims, # of data)-array
datapoints to estimate from datapoints to estimate from
hs : array-like (optional) hs : array-like (optional)
smooting parameter vector/matrix. smooting parameter vector/matrix.
@ -253,16 +263,20 @@ class KDE(object):
t = np.trapz(f, x) t = np.trapz(f, x)
""" """
def __init__(self, dataset, hs=None, kernel=None, alpha=0.0): def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None, xmax=None, inc=128):
self.kernel = kernel if kernel else Kernel('gauss') self.kernel = kernel if kernel else Kernel('gauss')
self.hs = hs self.hs = hs
self.alpha = alpha self.alpha = alpha
self.dataset = atleast_2d(dataset) self.dataset = atleast_2d(data)
self.d, self.n = self.dataset.shape self.d, self.n = self.dataset.shape
self.xmin = xmin
self.xmax = xmax
self.inc = inc
self.initialize() self.initialize()
def initialize(self): def initialize(self):
self._set_xlimits()
self._compute_smoothing() self._compute_smoothing()
if self.alpha > 0: if self.alpha > 0:
pilot = KDE(self.dataset, hs=self.hs, kernel=self.kernel, alpha=0) pilot = KDE(self.dataset, hs=self.hs, kernel=self.kernel, alpha=0)
@ -271,7 +285,20 @@ class KDE(object):
self._lambda = (f / g) ** (-self.alpha) self._lambda = (f / g) ** (-self.alpha)
else: else:
self._lambda = np.ones(self.n) self._lambda = np.ones(self.n)
def _set_xlimits(self):
amin = self.dataset.min(axis=-1)
amax = self.dataset.max(axis=-1)
xyzrange = amax-amin
if self.xmin is None:
self.xmin = amin-xyzrange/4.0
else:
self.xmin = self.xmin * np.ones(self.d)
if self.xmax is None:
self.xmax = amax + xyzrange/4.0
else:
self.xmax = self.xmax * np.ones(self.d)
def _compute_smoothing(self): def _compute_smoothing(self):
"""Computes the smoothing matrix """Computes the smoothing matrix
""" """
@ -302,7 +329,84 @@ class KDE(object):
self.hs = h self.hs = h
self._norm_factor = deth * self.n self._norm_factor = deth * self.n
def eval_grid_fast(self, *args):
"""Evaluate the estimated pdf on a grid.
Parameters
----------
arg_0,arg_1,... arg_d-1 : vectors
Alternatively, if no vectors is passed in then
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
Returns
-------
values : array-like
The values evaluated at meshgrid(*args).
"""
if len(args)==0:
for i in range(self.d):
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
return self._eval_grid_fast(*args)
def _eval_grid_fast(self, *args):
X = np.vstack(args)
d, inc = X.shape
dx = X[:,1]-X[:,0]
Xn = []
nfft0 = 2*inc
nfft = (nfft0,)*d
x0 = np.linspace(-inc, inc, nfft0)
for i in range(d):
Xn.append(x0*dx[i])
Xnc = meshgrid(*Xn)
shape0 = Xnc[0].shape
for i in range(d):
Xnc[i].shape = (-1,)
Xn = np.dot(np.vstack(Xnc), self.inv_hs)
# Obtain the kernel weights.
kw = self.kernel(Xn)
kw.shape = shape0
kw = np.fft.ifftshift(kw)
fftn = np.fft.fftn
ifftn = np.fft.ifftn
# Find the binned kernel weights, c.
c = gridcount(self.dataset, X)
# Perform the convolution.
z = np.real(ifftn(fftn(c,s=nfft)*fftn(kw)))
ix = (slice(0,inc),)*d
return z[ix]*(z[ix]>0.0)
def eval_grid(self, *args): def eval_grid(self, *args):
"""Evaluate the estimated pdf on a grid.
Parameters
----------
arg_0,arg_1,... arg_d-1 : vectors
Alternatively, if no vectors is passed in then
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
Returns
-------
values : array-like
The values evaluated at meshgrid(*args).
"""
if len(args)==0:
for i in range(self.d):
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
return self._eval_grid(*args)
def _eval_grid(self, *args):
grd = meshgrid(*args) grd = meshgrid(*args)
shape0 = grd[0].shape shape0 = grd[0].shape
d = len(grd) d = len(grd)
@ -369,12 +473,7 @@ class KDE(object):
__call__ = evaluate __call__ = evaluate
class KDEBIN(KDE):
def __init__(self, dataset, hs=None, kernel=None, alpha=0.0, inc=128):
KDE.__init__(self, dataset, hs, kernel, alpha)
self.inc = inc
def evaluate(self, *args):
pass
class _Kernel(object): class _Kernel(object):
def __init__(self, r=1.0, stats=None): def __init__(self, r=1.0, stats=None):
self.r = r # radius of kernel self.r = r # radius of kernel
@ -388,6 +487,17 @@ class _Kernel(object):
return self._kernel(np.atleast_2d(x)) return self._kernel(np.atleast_2d(x))
def deriv4_6_8_10(self, t, numout=4): def deriv4_6_8_10(self, t, numout=4):
raise Exception('Method not implemented for this kernel!') raise Exception('Method not implemented for this kernel!')
def effective_support(self):
'''
Return the effective support of kernel.
The kernel must be symmetric and compactly supported on [-tau tau]
if the kernel has infinite support then the kernel must have
the effective support in [-tau tau], i.e., be negligible outside the range
'''
return self._effective_support()
def _effective_support(self):
return -self.r, self.r
__call__ = kernel __call__ = kernel
class _KernelMulti(_Kernel): class _KernelMulti(_Kernel):
@ -453,10 +563,12 @@ mkernel_triangular = _KernelTriangular(stats=_stats_tria)
class _KernelGaussian(_Kernel): class _KernelGaussian(_Kernel):
def _kernel(self, x): def _kernel(self, x):
x2 = x ** 2 sigma = self.r/4.0
x2 = (x/sigma) ** 2
return exp(-0.5 * x2.sum(axis=0)) return exp(-0.5 * x2.sum(axis=0))
def norm_factor(self, d=1, n=None): def norm_factor(self, d=1, n=None):
return (2 * pi) ** (d / 2.0) sigma = self.r/4.0
return (2 * pi * sigma) ** (d / 2.0)
def deriv4_6_8_10(self, t, numout=4): def deriv4_6_8_10(self, t, numout=4):
''' '''
Returns 4th, 6th, 8th and 10th derivatives of the kernel function. Returns 4th, 6th, 8th and 10th derivatives of the kernel function.
@ -475,7 +587,8 @@ class _KernelGaussian(_Kernel):
pn = pnp2 pn = pnp2
return out return out
mkernel_gaussian = _KernelGaussian(stats=_stats_gaus)
mkernel_gaussian = _KernelGaussian(r=4.0, stats=_stats_gaus)
#def mkernel_gaussian(X): #def mkernel_gaussian(X):
# x2 = X ** 2 # x2 = X ** 2
@ -488,13 +601,13 @@ class _KernelLaplace(_Kernel):
return exp(-absX.sum(axis=0)) return exp(-absX.sum(axis=0))
def norm_factor(self, d=1, n=None): def norm_factor(self, d=1, n=None):
return 2 ** d return 2 ** d
mkernel_laplace = _KernelLaplace(stats=_stats_lapl) mkernel_laplace = _KernelLaplace(r=7.0, stats=_stats_lapl)
class _KernelLogistic(_Kernel): class _KernelLogistic(_Kernel):
def _kernel(self, x): def _kernel(self, x):
s = exp(x) s = exp(x)
return np.prod(s / (s + 1) ** 2, axis=0) return np.prod(s / (s + 1) ** 2, axis=0)
mkernel_logistic = _KernelLogistic(stats=_stats_logi) mkernel_logistic = _KernelLogistic(r=7.0, stats=_stats_logi)
_MKERNEL_DICT = dict( _MKERNEL_DICT = dict(
epan=mkernel_epanechnikov, epan=mkernel_epanechnikov,
@ -605,6 +718,9 @@ class Kernel(object):
def deriv4_6_8_10(self, t, numout=4): def deriv4_6_8_10(self, t, numout=4):
return self.kernel.deriv4_6_8_10(t, numout) return self.kernel.deriv4_6_8_10(t, numout)
def effective_support(self):
return self.kernel.effective_support()
def hns(self, data): def hns(self, data):
''' '''
Returns Normal Scale Estimate of Smoothing Parameter. Returns Normal Scale Estimate of Smoothing Parameter.

Loading…
Cancel
Save