Added dctn and idctn

master
Per.Andreas.Brodtkorb 13 years ago
parent 4b820e85ee
commit 676d30b822

@ -1,5 +1,5 @@
import numpy as np
__all__ = ['dct', 'idct']
__all__ = ['dct', 'idct', 'dctn', 'idctn']
def dct(x, n=None):
"""
Discrete Cosine Transform
@ -54,12 +54,12 @@ def idct(x, n=None):
"""
Inverse Discrete Cosine Transform
N-1
x[k] = 1/N sum w[n]*y[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
n=0
N-1
x[k] = 1/N sum w[n]*y[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
n=0
w(0) = 1/2
w(n) = 1 for n>0
w(0) = 1/2
w(n) = 1 for n>0
Examples
--------
@ -105,3 +105,258 @@ def idct(x, n=None):
return y.real
else:
return y
def dctn(y, axis=None, w=None):
'''
DCTN N-D discrete cosine transform.
Y = DCTN(X) returns the discrete cosine transform of X. The array Y is
the same size as X and contains the discrete cosine transform
coefficients. This transform can be inverted using IDCTN.
DCTN(X,axis) applies the DCTN operation across the dimension axis.
Class Support
-------------
Input array can be numeric or logical. The returned array is of class
double.
Reference
---------
Narasimha M. et al, On the computation of the discrete cosine
transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
Example
-------
RGB = imread('autumn.tif');
I = rgb2gray(RGB);
J = dctn(I);
imshow(log(abs(J)),[]), colormap(jet), colorbar
The commands below set values less than magnitude 10 in the DCT matrix
to zero, then reconstruct the image using the inverse DCT.
J(abs(J)<10) = 0;
K = idctn(J);
figure, imshow(I)
figure, imshow(K,[0 255])
See also
--------
idctn, dct, idct
'''
y = np.atleast_1d(y)
shape0 = y.shape
if axis is None:
y = y.squeeze() # Working across singleton dimensions is useless
dimy = y.ndim
if dimy==1:
y = np.atleast_2d(y)
y = y.T
# Some modifications are required if Y is a vector
# if isvector(y):
# if y.shape[0]==1:
# if axis==0:
# return y, None
# elif axis==1:
# axis=0
# y = y.T
# elif axis==1:
# return y, None
if w is None:
w = [0,] * dimy
for dim in range(dimy):
if axis is not None and dim!=axis:
continue
n = (dimy==1)*y.size + (dimy>1)*shape0[dim]
#w{dim} = exp(1i*(0:n-1)'*pi/2/n);
w[dim] = np.exp(1j * np.arange(n) * np.pi / (2 * n))
# --- DCT algorithm ---
if np.iscomplex(y).any():
y = np.complex(dctn(np.real(y),axis,w),dctn(np.imag(y),axis,w))
else:
for dim in range(dimy):
y = shiftdim(y,1)
if axis is not None and dim!=axis:
y = shiftdim(y, 1)
continue
siz = y.shape
n = siz[-1]
y = y[...,np.r_[0:n:2, 2*int(n//2)-1:0:-2]]
y = y.reshape((-1,n))
y = y*np.sqrt(2*n);
y = (np.fft.ifft(y, n=n, axis=1) * w[dim]).real
y[:,0] = y[:,0]/np.sqrt(2)
y = y.reshape(siz)
#end
#end
return y.reshape(shape0), w
def idctn(y, axis=None, w=None):
'''
IDCTN N-D inverse discrete cosine transform.
X = IDCTN(Y) inverts the N-D DCT transform, returning the original
array if Y was obtained using Y = DCTN(X).
IDCTN(X,DIM) applies the IDCTN operation across the dimension DIM.
Class Support
-------------
Input array can be numeric or logical. The returned array is of class
double.
Reference
---------
Narasimha M. et al, On the computation of the discrete cosine
transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
Example
-------
RGB = imread('autumn.tif');
I = rgb2gray(RGB);
J = dctn(I);
imshow(log(abs(J)),[]), colormap(jet), colorbar
The commands below set values less than magnitude 10 in the DCT matrix
to zero, then reconstruct the image using the inverse DCT.
J(abs(J)<10) = 0;
K = idctn(J);
figure, imshow(I)
figure, imshow(K,[0 255])
See also
--------
dctn, idct, dct
-- Damien Garcia -- 2009/04, revised 2009/11
website: <a
href="matlab:web('http://www.biomecardio.com')">www.BiomeCardio.com</a>
----------
[Y,W] = IDCTN(X,DIM,W) uses and returns the weights which are used by
the program. If IDCTN is required for several large arrays of same
size, the weights can be reused to make the algorithm faster. A typical
syntax is the following:
w = [];
for k = 1:10
[y{k},w] = idctn(x{k},[],w);
end
The weights (w) are calculated during the first call of IDCTN then
reused in the next calls.
'''
y = np.atleast_1d(y)
shape0 = y.shape
if axis is None:
y = y.squeeze() # Working across singleton dimensions is useless
dimy = y.ndim
if dimy==1:
y = np.atleast_2d(y)
y = y.T
# Some modifications are required if Y is a vector
# if isvector(y):
# if y.shape[0]==1:
# if axis==0:
# return y, None
# elif axis==1:
# axis=0
# y = y.T
# elif axis==1:
# return y, None
#
if w is None:
w = [0,] * dimy
for dim in range(dimy):
if axis is not None and dim!=axis:
continue
n = (dimy==1)*y.size + (dimy>1)*shape0[dim]
#w{dim} = exp(1i*(0:n-1)'*pi/2/n);
w[dim] = np.exp(1j * np.arange(n) * np.pi / (2 * n))
# --- IDCT algorithm ---
if np.iscomplex(y).any():
y = np.complex(idctn(np.real(y),axis,w),idctn(np.imag(y),axis,w))
else:
for dim in range(dimy):
y = shiftdim(y,1)
if axis is not None and dim!=axis:
#y = shiftdim(y, 1)
continue
siz = y.shape
n = siz[-1]
y = y.reshape((-1,n)) * w[dim]
y[:,0] = y[:,0]/np.sqrt(2)
y = (np.fft.ifft(y, n=n, axis=1)).real
y = y * np.sqrt(2*n)
I = np.empty(n,dtype=int)
I.put(np.r_[0:n:2],np.r_[0:int(n//2)+np.remainder(n,2)])
I.put(np.r_[1:n:2],np.r_[n-1:int(n//2)-1:-1])
y = y[:,I]
y = y.reshape(siz)
y = y.reshape(shape0);
return y, w
def no_leading_ones(x):
first = 0
for i, xi in enumerate(x):
if xi != 1:
first = i
break
return x[first:]
def shiftdim(x, n=None):
if n is None:
# returns the array B with the same number of
# elements as X but with any leading singleton
# dimensions removed.
return x.reshape(no_leading_ones(x.shape))
elif n>=0:
# When n is positive, shiftdim shifts the dimensions
# to the left and wraps the n leading dimensions to the end.
return x.transpose(np.roll(range(x.ndim), -n))
else:
# When n is negative, shiftdim shifts the dimensions
# to the right and pads with singletons.
return x.reshape((1,)*-n+x.shape)
def test_dctn():
a = np.arange(12).reshape((3,-1))
#y = dct(a)
#x = idct(y)
#print(y)
#print(x)
print(a)
yn = dctn(a)[0]
xn = idctn(yn)[0]
print(yn)
print(xn)
def test_docstrings():
import doctest
doctest.testmod()
if __name__ == '__main__':
#test_docstrings()
test_dctn()
Loading…
Cancel
Save