|
|
|
@ -22,6 +22,12 @@ def _assert(cond, msg):
|
|
|
|
|
if not cond:
|
|
|
|
|
raise ValueError(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _assert_warn(cond, msg):
|
|
|
|
|
if not cond:
|
|
|
|
|
warnings.warn(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# stats = (mu2, R, Rdd) where
|
|
|
|
|
# mu2 : 2'nd order moment, i.e.,int(x^2*kernel(x))
|
|
|
|
|
# R : integral of squared kernel, i.e., int(kernel(x)^2)
|
|
|
|
@ -36,31 +42,39 @@ _stats_logi = (pi ** 2 / 3, 1. / 6, 1 / 42)
|
|
|
|
|
_stats_gaus = (1, 1. / (2 * sqrt(pi)), 3. / (8 * sqrt(pi)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def qlevels(pdf, p=(10, 30, 50, 70, 90, 95, 99, 99.9), x1=None, x2=None):
|
|
|
|
|
"""QLEVELS Calculates quantile levels which encloses P% of PDF.
|
|
|
|
|
def qlevels(pdf, p=(10, 30, 50, 70, 90, 95, 99, 99.9), xi=(), indexing='xy'):
|
|
|
|
|
"""QLEVELS Calculates quantile levels which encloses P% of pdf.
|
|
|
|
|
|
|
|
|
|
CALL: [ql PL] = qlevels(pdf,PL,x1,x2);
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
pdf: array-like
|
|
|
|
|
joint point density function given as array or vector
|
|
|
|
|
p : float in range of [0,100] (or sequence of floats)
|
|
|
|
|
Percentage to compute which must be between 0 and 100 inclusive.
|
|
|
|
|
xi : tuple
|
|
|
|
|
input arguments to the pdf, i.e., (x0, x1,...., xn)
|
|
|
|
|
indexing : {'xy', 'ij'}, optional
|
|
|
|
|
Cartesian ('xy', default) or matrix ('ij') indexing of pdf.
|
|
|
|
|
See numpy.meshgrid for more details.
|
|
|
|
|
|
|
|
|
|
ql = the discrete quantile levels.
|
|
|
|
|
pdf = joint point density function matrix or vector
|
|
|
|
|
PL = percent level (default [10:20:90 95 99 99.9])
|
|
|
|
|
x1,x2 = vectors of the spacing of the variables
|
|
|
|
|
(Default unit spacing)
|
|
|
|
|
Returns
|
|
|
|
|
------
|
|
|
|
|
levels: array-like
|
|
|
|
|
discrete levels which encloses P% of pdf
|
|
|
|
|
|
|
|
|
|
QLEVELS numerically integrates PDF by decreasing height and find the
|
|
|
|
|
quantile levels which encloses P% of the distribution. If X1 and
|
|
|
|
|
(or) X2 is unspecified it is assumed that dX1 and dX2 is constant.
|
|
|
|
|
NB! QLEVELS normalizes the integral of PDF to N/(N+0.001) before
|
|
|
|
|
calculating QL in order to reflect the sampling of PDF is finite.
|
|
|
|
|
Currently only able to handle 1D and 2D PDF's if dXi is not constant
|
|
|
|
|
(i=1,2).
|
|
|
|
|
quantile levels which encloses P% of the distribution.
|
|
|
|
|
|
|
|
|
|
If Xi is unspecified it is assumed that dX0, dX1,..., and dXn is constant.
|
|
|
|
|
NB! QLEVELS normalizes the integral of PDF to n/(n+0.001) before
|
|
|
|
|
calculating 'levels' in order to reflect the sampling of PDF is finite.
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
|
-------
|
|
|
|
|
>>> import wafo.stats as ws
|
|
|
|
|
>>> x = np.linspace(-8,8,2001);
|
|
|
|
|
>>> PL = np.r_[10:90:20, 90, 95, 99, 99.9]
|
|
|
|
|
>>> qlevels(ws.norm.pdf(x),p=PL, x1=x);
|
|
|
|
|
>>> qlevels(ws.norm.pdf(x),p=PL, xi=(x,));
|
|
|
|
|
array([ 0.39591707, 0.37058719, 0.31830968, 0.23402133, 0.10362052,
|
|
|
|
|
0.05862129, 0.01449505, 0.00178806])
|
|
|
|
|
|
|
|
|
@ -74,73 +88,58 @@ def qlevels(pdf, p=(10, 30, 50, 70, 90, 95, 99, 99.9), x1=None, x2=None):
|
|
|
|
|
qlevels2, tranproc
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
def _dx(x):
|
|
|
|
|
dx = np.diff(x.ravel()) * 0.5
|
|
|
|
|
return np.r_[0, dx] + np.r_[dx, 0]
|
|
|
|
|
|
|
|
|
|
def _init(pdf, xi, indexing):
|
|
|
|
|
if not xi:
|
|
|
|
|
return pdf.ravel()
|
|
|
|
|
if not isinstance(xi, tuple):
|
|
|
|
|
xi = (xi,)
|
|
|
|
|
dx = np.meshgrid(*[_dx(x) for x in xi], sparse=True, indexing=indexing)
|
|
|
|
|
dxij = np.ones((1))
|
|
|
|
|
for dxi in dx:
|
|
|
|
|
dxij = dxij * dxi
|
|
|
|
|
_assert(dxij.shape == pdf.shape,
|
|
|
|
|
'Shape of pdf does not match the arguments')
|
|
|
|
|
return (pdf * dxij).ravel()
|
|
|
|
|
|
|
|
|
|
def _check_levels(levels, pdf):
|
|
|
|
|
_assert_warn(not np.any(levels >= max(pdf.ravel())),
|
|
|
|
|
'The lowest percent level is too close to 0%')
|
|
|
|
|
_assert_warn(not np.any(levels <= min(pdf.ravel())),
|
|
|
|
|
'The given pdf is too sparsely sampled or the highest '
|
|
|
|
|
'percent level is too close to 100%')
|
|
|
|
|
|
|
|
|
|
pdf, p = np.atleast_1d(pdf, p)
|
|
|
|
|
_assert(not any(pdf.ravel() < 0),
|
|
|
|
|
'This is not a pdf since one or more values of pdf is negative')
|
|
|
|
|
_assert(not np.any((p < 0) | (100 < p)), 'PL must satisfy 0 <= PL <= 100')
|
|
|
|
|
|
|
|
|
|
norm = 1 # normalize cdf to unity
|
|
|
|
|
pdf = np.atleast_1d(pdf)
|
|
|
|
|
_assert(not any(pdf.ravel() < 0), 'This is not a pdf since one or more '
|
|
|
|
|
'values of pdf is negative')
|
|
|
|
|
|
|
|
|
|
fsiz = pdf.shape
|
|
|
|
|
fsizmin = min(fsiz)
|
|
|
|
|
if fsizmin == 0:
|
|
|
|
|
if min(pdf.shape) == 0:
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
N = np.prod(fsiz)
|
|
|
|
|
d = len(fsiz)
|
|
|
|
|
if x1 is None or ((x2 is None) and d > 2):
|
|
|
|
|
fdfi = pdf.ravel()
|
|
|
|
|
else:
|
|
|
|
|
if d == 1: # pdf in one dimension
|
|
|
|
|
dx22 = np.ones(1)
|
|
|
|
|
else: # % pdf in two dimensions
|
|
|
|
|
dx2 = np.diff(x2.ravel()) * 0.5
|
|
|
|
|
dx22 = np.r_[0, dx2] + np.r_[dx2, 0]
|
|
|
|
|
|
|
|
|
|
dx1 = np.diff(x1.ravel()) * 0.5
|
|
|
|
|
dx11 = np.r_[0, dx1] + np.r_[dx1, 0]
|
|
|
|
|
dx1x2 = dx22[:, None] * dx11
|
|
|
|
|
fdfi = (pdf * dx1x2).ravel()
|
|
|
|
|
|
|
|
|
|
p = np.atleast_1d(p)
|
|
|
|
|
_assert(not np.any((p < 0) | (100 < p)), 'PL must satisfy 0 <= PL <= 100')
|
|
|
|
|
|
|
|
|
|
p2 = p / 100.0
|
|
|
|
|
ind = np.argsort(pdf.ravel()) # sort by height of pdf
|
|
|
|
|
ind = ind[::-1]
|
|
|
|
|
fi = pdf.flat[ind]
|
|
|
|
|
sorted_pdf = pdf.flat[ind]
|
|
|
|
|
|
|
|
|
|
pdf_dx = _init(pdf, xi, indexing=indexing)
|
|
|
|
|
# integration in the order of decreasing height of pdf
|
|
|
|
|
Fi = np.cumsum(fdfi[ind])
|
|
|
|
|
cdf = np.cumsum(pdf_dx[ind])
|
|
|
|
|
n = pdf_dx.size
|
|
|
|
|
# normalize cdf to make sure int pdf dx1 dx2 approx 1
|
|
|
|
|
cdf = cdf / cdf[-1] * n / (n + 1.5e-8)
|
|
|
|
|
|
|
|
|
|
if norm: # normalize Fi to make sure int pdf dx1 dx2 approx 1
|
|
|
|
|
Fi = Fi / Fi[-1] * N / (N + 1.5e-8)
|
|
|
|
|
# make sure cdf is strictly increasing by not considering duplicate values
|
|
|
|
|
ind, = np.where(np.diff(np.r_[cdf, 1]) > 0)
|
|
|
|
|
|
|
|
|
|
maxFi = np.max(Fi)
|
|
|
|
|
if maxFi > 1:
|
|
|
|
|
warnings.warn('this is not a pdf since cdf>1! normalizing')
|
|
|
|
|
# calculating the inverse of cdf to find the levels
|
|
|
|
|
levels = tranproc(cdf[ind], sorted_pdf[ind], p / 100.0)
|
|
|
|
|
|
|
|
|
|
Fi = Fi / Fi[-1] * N / (N + 1.5e-8)
|
|
|
|
|
|
|
|
|
|
elif maxFi < .95:
|
|
|
|
|
msg = '''The given pdf is too sparsely sampled since cdf<.95.
|
|
|
|
|
Thus QL is questionable'''
|
|
|
|
|
warnings.warn(msg)
|
|
|
|
|
|
|
|
|
|
# make sure Fi is strictly increasing by not considering duplicate values
|
|
|
|
|
ind, = np.where(np.diff(np.r_[Fi, 1]) > 0)
|
|
|
|
|
# calculating the inverse of Fi to find the index
|
|
|
|
|
ui = tranproc(Fi[ind], fi[ind], p2)
|
|
|
|
|
|
|
|
|
|
if np.any(ui >= max(pdf.ravel())):
|
|
|
|
|
warnings.warn('The lowest percent level is too close to 0%')
|
|
|
|
|
|
|
|
|
|
if np.any(ui <= min(pdf.ravel())):
|
|
|
|
|
msg = '''The given pdf is too sparsely sampled or
|
|
|
|
|
the highest percent level is too close to 100%'''
|
|
|
|
|
warnings.warn(msg)
|
|
|
|
|
ui[ui < 0] = 0.0
|
|
|
|
|
|
|
|
|
|
return ui
|
|
|
|
|
_check_levels(levels, pdf)
|
|
|
|
|
levels[levels < 0] = 0.0
|
|
|
|
|
return levels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def qlevels2(data, p=(10, 30, 50, 70, 90, 95, 99, 99.9), method=1):
|
|
|
|
@ -262,9 +261,16 @@ def sphere_volume(d, r=1.0):
|
|
|
|
|
class _Kernel(object):
|
|
|
|
|
__metaclass__ = ABCMeta
|
|
|
|
|
|
|
|
|
|
def __init__(self, r=1.0, stats=None):
|
|
|
|
|
self.r = r # radius of kernel
|
|
|
|
|
def __init__(self, r=1.0, stats=None, name=''):
|
|
|
|
|
self.r = r # radius of effective support of kernel
|
|
|
|
|
self.stats = stats
|
|
|
|
|
if not name:
|
|
|
|
|
name = self.__class__.__name__.replace('_Kernel', '')
|
|
|
|
|
self._name = name
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def name(self):
|
|
|
|
|
return self._name
|
|
|
|
|
|
|
|
|
|
def norm_factor(self, d=1, n=None):
|
|
|
|
|
_assert(0 < d, "D")
|
|
|
|
@ -308,9 +314,9 @@ class _KernelMulti(_Kernel):
|
|
|
|
|
p=3; Multivariate Tri-weight Kernel
|
|
|
|
|
p=4; Multivariate Four-weight Kernel
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, r=1.0, p=1, stats=None):
|
|
|
|
|
def __init__(self, r=1.0, p=1, stats=None, name=''):
|
|
|
|
|
self.p = p
|
|
|
|
|
super(_KernelMulti, self).__init__(r, stats)
|
|
|
|
|
super(_KernelMulti, self).__init__(r, stats, name)
|
|
|
|
|
|
|
|
|
|
def norm_factor(self, d=1, n=None):
|
|
|
|
|
r = self.r
|
|
|
|
@ -325,9 +331,10 @@ class _KernelMulti(_Kernel):
|
|
|
|
|
x2 = x ** 2
|
|
|
|
|
return ((1.0 - x2.sum(axis=0) / r ** 2).clip(min=0.0)) ** p
|
|
|
|
|
|
|
|
|
|
mkernel_epanechnikov = _KernelMulti(p=1, stats=_stats_epan)
|
|
|
|
|
mkernel_biweight = _KernelMulti(p=2, stats=_stats_biwe)
|
|
|
|
|
mkernel_triweight = _KernelMulti(p=3, stats=_stats_triw)
|
|
|
|
|
mkernel_epanechnikov = _KernelMulti(p=1, stats=_stats_epan,
|
|
|
|
|
name='epanechnikov')
|
|
|
|
|
mkernel_biweight = _KernelMulti(p=2, stats=_stats_biwe, name='biweight')
|
|
|
|
|
mkernel_triweight = _KernelMulti(p=3, stats=_stats_triw, name='triweight')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _KernelProduct(_KernelMulti):
|
|
|
|
@ -350,9 +357,11 @@ class _KernelProduct(_KernelMulti):
|
|
|
|
|
pdf = (1 - (x / r) ** 2).clip(min=0.0) ** self.p
|
|
|
|
|
return pdf.prod(axis=0)
|
|
|
|
|
|
|
|
|
|
mkernel_p1epanechnikov = _KernelProduct(p=1, stats=_stats_epan)
|
|
|
|
|
mkernel_p1biweight = _KernelProduct(p=2, stats=_stats_biwe)
|
|
|
|
|
mkernel_p1triweight = _KernelProduct(p=3, stats=_stats_triw)
|
|
|
|
|
mkernel_p1epanechnikov = _KernelProduct(p=1, stats=_stats_epan,
|
|
|
|
|
name='p1epanechnikov')
|
|
|
|
|
mkernel_p1biweight = _KernelProduct(p=2, stats=_stats_biwe, name='p1biweight')
|
|
|
|
|
mkernel_p1triweight = _KernelProduct(p=3, stats=_stats_triw,
|
|
|
|
|
name='p1triweight')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _KernelRectangular(_Kernel):
|
|
|
|
@ -404,11 +413,6 @@ class _KernelGaussian(_Kernel):
|
|
|
|
|
|
|
|
|
|
mkernel_gaussian = _KernelGaussian(r=4.0, stats=_stats_gaus)
|
|
|
|
|
|
|
|
|
|
# def mkernel_gaussian(X):
|
|
|
|
|
# x2 = X ** 2
|
|
|
|
|
# d = X.shape[0]
|
|
|
|
|
# return (2 * pi) ** (-d / 2) * exp(-0.5 * x2.sum(axis=0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _KernelLaplace(_Kernel):
|
|
|
|
|
|
|
|
|
@ -439,8 +443,8 @@ _MKERNEL_DICT = dict(
|
|
|
|
|
tria=mkernel_triangular,
|
|
|
|
|
lapl=mkernel_laplace,
|
|
|
|
|
logi=mkernel_logistic,
|
|
|
|
|
gaus=mkernel_gaussian
|
|
|
|
|
)
|
|
|
|
|
gaus=mkernel_gaussian)
|
|
|
|
|
|
|
|
|
|
_KERNEL_EXPONENT_DICT = dict(
|
|
|
|
|
re=0, sp=0, ep=1, bi=2, tr=3, fo=4, fi=5, si=6, se=7)
|
|
|
|
|
|
|
|
|
@ -530,7 +534,7 @@ class Kernel(object):
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def name(self):
|
|
|
|
|
return self.kernel.__class__.__name__.replace('_Kernel', '').title()
|
|
|
|
|
return self.kernel.name
|
|
|
|
|
|
|
|
|
|
def stats(self):
|
|
|
|
|
"""Return some 1D statistics of the kernel.
|
|
|
|
@ -586,8 +590,13 @@ class Kernel(object):
|
|
|
|
|
visual check by eye.
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
data = rndnorm(0, 1,20,1)
|
|
|
|
|
h = hns(data,'epan')
|
|
|
|
|
-------
|
|
|
|
|
>>> import numpy as np
|
|
|
|
|
>>> import wafo.kdetools as wk
|
|
|
|
|
>>> import wafo.stats as ws
|
|
|
|
|
>>> kernel = wk.Kernel('epan')
|
|
|
|
|
>>> data = ws.norm.rvs(0, 1, size=(1,20))
|
|
|
|
|
>>> h = kernel.hns(data)
|
|
|
|
|
|
|
|
|
|
See also:
|
|
|
|
|
---------
|
|
|
|
@ -601,7 +610,6 @@ class Kernel(object):
|
|
|
|
|
Wand,M.P. and Jones, M.C. (1995)
|
|
|
|
|
'Kernel smoothing'
|
|
|
|
|
Chapman and Hall, pp 60--63
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
a = np.atleast_2d(data)
|
|
|
|
@ -611,13 +619,13 @@ class Kernel(object):
|
|
|
|
|
mu2, R, _Rdd = self.stats()
|
|
|
|
|
amise_constant = (8 * sqrt(pi) * R / (3 * mu2 ** 2 * n)) ** (1. / 5)
|
|
|
|
|
iqr = iqrange(a, axis=1) # interquartile range
|
|
|
|
|
stdA = np.std(a, axis=1, ddof=1)
|
|
|
|
|
std_a = np.std(a, axis=1, ddof=1)
|
|
|
|
|
# use of interquartile range guards against outliers.
|
|
|
|
|
# the use of interquartile range is better if
|
|
|
|
|
# the distribution is skew or have heavy tails
|
|
|
|
|
# This lessen the chance of oversmoothing.
|
|
|
|
|
return np.where(iqr > 0,
|
|
|
|
|
np.minimum(stdA, iqr / 1.349), stdA) * amise_constant
|
|
|
|
|
np.minimum(std_a, iqr / 1.349), std_a) * amise_constant
|
|
|
|
|
|
|
|
|
|
def hos(self, data):
|
|
|
|
|
"""Returns Oversmoothing Parameter.
|
|
|
|
@ -680,7 +688,8 @@ class Kernel(object):
|
|
|
|
|
elif name == 'gaus': # Gaussian kernel
|
|
|
|
|
a = (4.0 / (d + 2.0)) ** (1. / (d + 4.0))
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError('Unknown kernel.')
|
|
|
|
|
raise NotImplementedError('Hmns bandwidth not implemented for '
|
|
|
|
|
'kernel {}.'.format(name))
|
|
|
|
|
return a
|
|
|
|
|
|
|
|
|
|
def hmns(self, data):
|
|
|
|
@ -696,7 +705,6 @@ class Kernel(object):
|
|
|
|
|
'triweight' - Tri-weight kernel.
|
|
|
|
|
'gaussian' - Gaussian kernel
|
|
|
|
|
|
|
|
|
|
Note that only the first 4 letters of the kernel name is needed.
|
|
|
|
|
|
|
|
|
|
HMNS only gives a optimal value with respect to mean integrated
|
|
|
|
|
square error, when the true underlying distribution is Multivariate
|
|
|
|
@ -725,7 +733,6 @@ class Kernel(object):
|
|
|
|
|
Chapman and Hall, pp 60--63, 86--88
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
# TODO: implement more kernels
|
|
|
|
|
|
|
|
|
|
a = np.atleast_2d(data)
|
|
|
|
|
d, n = a.shape
|
|
|
|
@ -1081,35 +1088,53 @@ class Kernel(object):
|
|
|
|
|
warnings.warn('The obtained value did not converge.')
|
|
|
|
|
|
|
|
|
|
h[dim] = h1 * s
|
|
|
|
|
# end % for dim loop
|
|
|
|
|
# end # for dim loop
|
|
|
|
|
return h
|
|
|
|
|
|
|
|
|
|
def hscv(self, data, hvec=None, inc=128, maxit=100, fulloutput=False):
|
|
|
|
|
'''
|
|
|
|
|
HSCV Smoothed cross-validation estimate of smoothing parameter.
|
|
|
|
|
|
|
|
|
|
CALL: [hs,hvec,score] = hscv(data,kernel,hvec)
|
|
|
|
|
|
|
|
|
|
hs = smoothing parameter
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
data = data vector
|
|
|
|
|
hvec = vector defining possible values of hs
|
|
|
|
|
(default linspace(0.25*h0,h0,100), h0=0.62)
|
|
|
|
|
inc = length of estimated kerneldensity estimate
|
|
|
|
|
maxit = maximum number of iterations
|
|
|
|
|
fulloutput = True if fulloutput is wanted
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
hs = smoothing parameter
|
|
|
|
|
hvec = vector defining possible values of hs
|
|
|
|
|
score = score vector
|
|
|
|
|
data = data vector
|
|
|
|
|
kernel = 'gaussian' - Gaussian kernel the only supported
|
|
|
|
|
|
|
|
|
|
Note that only the first 4 letters of the kernel name is needed.
|
|
|
|
|
Example
|
|
|
|
|
------
|
|
|
|
|
>>> import wafo.kdetools as wk
|
|
|
|
|
>>> import wafo.stats as ws
|
|
|
|
|
>>> data = ws.norm.rvs(0,1, size=(1,20))
|
|
|
|
|
>>> kernel = wk.Kernel('epan')
|
|
|
|
|
>>> hs0 = kernel.hscv(data, fulloutput=False)
|
|
|
|
|
>>> hs, hvec, score = kernel.hscv(data, fulloutput=True)
|
|
|
|
|
>>> np.allclose(hs, hs0)
|
|
|
|
|
True
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
data = rndnorm(0,1,20,1)
|
|
|
|
|
[hs hvec score] = hscv(data,'epan');
|
|
|
|
|
plot(hvec,score)
|
|
|
|
|
See also hste, hbcv, hboot, hos, hldpi, hlscv, hstt, kde, kdefun
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
plt.plot(hvec,score)
|
|
|
|
|
|
|
|
|
|
See also:
|
|
|
|
|
hste, hbcv, hboot, hos, hldpi, hlscv, hstt, kde, kdefun
|
|
|
|
|
|
|
|
|
|
Reference
|
|
|
|
|
---------
|
|
|
|
|
Wand,M.P. and Jones, M.C. (1986)
|
|
|
|
|
'Kernel smoothing'
|
|
|
|
|
Chapman and Hall, pp 75--79
|
|
|
|
|
'''
|
|
|
|
|
# TODO: Add support for other kernels than Gaussian
|
|
|
|
|
|
|
|
|
|
A = np.atleast_2d(data)
|
|
|
|
|
d, n = A.shape
|
|
|
|
|
|
|
|
|
@ -1209,17 +1234,16 @@ class Kernel(object):
|
|
|
|
|
idx = score.argmin()
|
|
|
|
|
# Kernel other than Gaussian scale bandwidth
|
|
|
|
|
h[dim] = hvec[idx] * (ste_constant / ste_constant2) ** (1 / 5)
|
|
|
|
|
if idx == 0:
|
|
|
|
|
warnings.warn("Optimum is probably lower than "
|
|
|
|
|
_assert_warn(0 < idx,
|
|
|
|
|
"Optimum is probably lower than "
|
|
|
|
|
"hs={0:g} for dim={1:d}".format(h[dim] * s, dim))
|
|
|
|
|
_assert_warn(idx < maxit - 1,
|
|
|
|
|
"Optimum is probably higher than "
|
|
|
|
|
"hs={0:g} for dim={1:d}".format(h[dim] * s, dim))
|
|
|
|
|
elif idx == maxit - 1:
|
|
|
|
|
msg = "Optimum is probably higher than hs={0:g] for dim={1:d}"
|
|
|
|
|
warnings.warn(msg.format(h[dim] * s, dim))
|
|
|
|
|
|
|
|
|
|
hvec = hvec * (ste_constant / ste_constant2) ** (1 / 5)
|
|
|
|
|
if fulloutput:
|
|
|
|
|
return h * sigmaA, score, hvec, sigmaA
|
|
|
|
|
else:
|
|
|
|
|
return h * sigmaA, score, hvec
|
|
|
|
|
return h * sigmaA
|
|
|
|
|
|
|
|
|
|
def hldpi(self, data, L=2, inc=128):
|
|
|
|
@ -1361,7 +1385,7 @@ def mkernel(X, kernel):
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
kde, kdefun, kdebin
|
|
|
|
|
KDE
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
|
----------
|
|
|
|
|