Small bugfixes and cosmetic fixes.

master
Per.Andreas.Brodtkorb 14 years ago
parent 7812a265f6
commit 65c5f22b7b

@ -167,12 +167,12 @@ class LevelCrossings(WafoData):
>>> lc_exp = lc.extrapolate(-2*s, 2*s, dist='expon')
>>> lc_ray = lc.extrapolate(-2*s, 2*s, dist='rayleigh')
lc.plot()
lc_gpd.plot()
lc_exp.plot()
lc_ray.plot()
See also
--------
cmat2extralc, rfmextrapolate, lc2rfmextreme, extralc, fitgenpar
@ -246,7 +246,7 @@ class LevelCrossings(WafoData):
if dist.startswith('gen'):
genpareto = distributions.genpareto
phat = genpareto.fit2(x, floc=0, method=method)
F = phat.cdf(xF)
SF = phat.sf(xF)
covar = phat.par_cov[::2, ::2]
# Calculate 90 # confidence region, an ellipse, for (k,s)
@ -274,28 +274,28 @@ class LevelCrossings(WafoData):
for i in range(Nc):
k = c1[0, i]
s = c1[1, i]
F2 = genpareto.cdf(xF, k, scale=s)
lcEstCu[:, i] = (lcu + dXX) * (1 - F2)
lcEstCl[:, i] = (lcu - dXX) * (1 - F2)
SF2 = genpareto.sf(xF, k, scale=s)
lcEstCu[:, i] = (lcu + dXX) * (SF2)
lcEstCl[:, i] = (lcu - dXX) * (SF2)
#end
lcEst = np.vstack((xF + u, lcu * (1 - F),
lcEst = np.vstack((xF + u, lcu * (SF),
lcEstCl.min(axis=1), lcEstCu.max(axis=1))).T
elif dist.startswith('exp'):
expon = distributions.expon
phat = expon.fit2(x, floc=0, method=method)
F = phat.cdf(xF)
lcEst = np.vstack((xF + u, lcu * (1 - F))).T
SF = phat.sf(xF)
lcEst = np.vstack((xF + u, lcu * (SF))).T
elif dist.startswith('ray') or dist.startswith('trun'):
phat = distributions.truncrayleigh.fit2(x, floc=0, method=method)
F = phat.cdf(xF)
SF = phat.sf(xF)
if False:
n = len(x)
Sx = sum((x + offset) ** 2 - offset ** 2)
s = sqrt(Sx / n); # Shape parameter
F = -np.expm1(-((xF + offset) ** 2 - offset ** 2) / s ** 2)
lcEst = np.vstack((xF + u, lcu * (1 - F))).T
lcEst = np.vstack((xF + u, lcu * (SF))).T
else:
raise ValueError()
@ -2393,7 +2393,7 @@ def sensor_type(*sensorids):
See also
--------
sensortypeid, tran
sensor_typeid, tran
'''
valid_names = ('n', 'n_t', 'n_tt', 'n_x', 'n_y', 'n_xx', 'n_yy', 'n_xy',
'p', 'u', 'v', 'w', 'u_t', 'v_t', 'w_t', 'x_p', 'y_p', 'z_p',
@ -2403,11 +2403,7 @@ def sensor_type(*sensorids):
ids = hstack(ids)
n = len(valid_names) - 1
ids = where(((ids < 0) | (n < ids)), n , ids)
#try:
return tuple(valid_names[i] for i in ids)
#except:
# raise ValueError('Input must be an integer!')
class TransferFunction(object):
'''
@ -2520,6 +2516,7 @@ class TransferFunction(object):
X_p=self._x_p, x_p=self._x_p,
Y_p=self._y_p, y_p=self._y_p,
Z_p=self._z_p, z_p=self._z_p)
__call__ = tran
def tran(self, w, theta=0, kw=None):
'''
Return transfer functions based on linear wave theory
@ -2578,7 +2575,7 @@ class TransferFunction(object):
#---Private member methods
def _get_ee_cthxy(self, theta, kw):
# convert to from angle in degrees to radians
# convert from angle in degrees to radians
bet = self.bet
thxr = self.thetax * pi / 180
thyr = self.thetay * pi / 180

@ -282,7 +282,7 @@ _doc_default_example = \
"""Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import %(name)s
>>> from wafo.stats import %(name)s
>>> numargs = %(name)s.numargs
>>> [ %(shapes)s ] = [0.9,] * numargs
>>> rv = %(name)s(%(shapes)s)
@ -5151,13 +5151,16 @@ class rayleigh_gen(rv_continuous):
return x - phat[0] / sqrt(-2.0 * logSF)
else:
return x - phat[1] * sqrt(-2.0 * logSF)
def _rvs(self):
return chi.rvs(2,size=self._size)
def _pdf(self, r):
return r*exp(-r*r/2.0)
def _logpdf(self, r):
return log(r) - r*r/2.0
def _cdf(self, r):
return - expm1(-r * r / 2.0)
def _sf(self, r):
return exp(-r * r / 2.0)
def _ppf(self, q):
return sqrt(-2 * log1p(-q))
def _stats(self):
@ -5178,26 +5181,45 @@ for x >= 0.
)
class truncrayleigh_gen(rv_continuous):
def _argcheck(self, c):
return (c>=0)
def link(self, x, logSF, phat, ix):
rv_continuous.link.__doc__
c = phat[0]
if ix == 1:
return x - phat[1] / sqrt(-2.0 * logSF)
else:
return x - phat[2] * sqrt(-2.0 * logSF)
if ix == 2:
return x - phat[1] / (sqrt(c*c - 2 * logSF) - c)
elif ix == 1:
return x - phat[2] * (sqrt(c*c - 2 * logSF) - c)
elif ix==0:
xn = (x - phat[1])/phat[2]
return - 2 * logSF / xn - xn / 2.0
def _fitstart(self, data, args=None):
if args is None:
args = (0.0,)*self.numargs
return args + self.fit_loc_scale(data, *args)
def _pdf(self, r, c):
rc = r+c
return rc*exp(-(rc*rc-c*c)/2.0)
def _logpdf(self, r, c):
rc = r+c
return log(rc)-(rc*rc-c*c)/2.0
def _cdf(self, r, c):
rc = r+c
return - expm1(-(rc*rc-c*c)/ 2.0)
def _logsf(self, r, c):
rc = r+c
return -(rc*rc-c*c)/ 2.0
def _sf(self, r, c):
return exp(self._logsf(r, c))
def _ppf(self, q, c):
return sqrt(c*c - 2 * log1p(-q)) - c
def _stats(self, c):
# TODO: correct this it is wrong!
val = 4-pi
return np.sqrt(pi/2), val/2, 2*(pi-3)*sqrt(pi)/val**1.5, \
6*pi/val-16/val**2
def _entropy(self, c):
# TODO: correct this it is wrong!
return _EULER/2.0 + 1 - 0.5*log(2)
truncrayleigh = truncrayleigh_gen(a=0.0, name="truncrayleigh",
longname="A truncated Rayleigh",
@ -5207,7 +5229,7 @@ truncrayleigh = truncrayleigh_gen(a=0.0, name="truncrayleigh",
Truncated Rayleigh distribution
truncrayleigh.cdf(r) = 1 - exp(-((r+c)**2-c**2)/2)
for x >= 0.
for x >= 0, c>=0.
"""
)
@ -7352,6 +7374,31 @@ Skellam distribution
)
def test_truncrayleigh():
import matplotlib.pyplot as plt
from wafo.stats import truncrayleigh
numargs = truncrayleigh.numargs
[ c ] = [0.9,] * numargs
rv = truncrayleigh(c)
#Display frozen pdf
x = np.linspace(0, np.minimum(rv.dist.b, 3))
h = plt.plot(x, rv.pdf(x))
#Check accuracy of cdf and ppf
prb = truncrayleigh.cdf(x, c)
h = plt.semilogy(np.abs(x - truncrayleigh.ppf(prb, c)) + 1e-20)
#Random number generation
R = truncrayleigh.rvs(c, size=100)
#Compare ML and MPS method
phat = truncrayleigh.fit2(R, method='ml');
def main():
import matplotlib
matplotlib.interactive(True)
@ -7402,4 +7449,5 @@ def main():
pht = genpareto.fit(r, 1, par_fix=[0, 0, nan])
lp = pht.profile()
if __name__ == '__main__':
main()
#main()
test_truncrayleigh()

@ -188,6 +188,9 @@ class TrData(WafoData, TrCommon):
self.children = [WafoData((self.args-self.mean)/self.sigma, self.args)]
def trdata(self):
return self
def _gauss2dat(self, y, *yi):
return tranproc(self.data, self.args, y, *yi)

@ -44,7 +44,7 @@ _example = '''
'''
class TrCommon2(TrCommon):
__doc__ = TrCommon.__doc__
def trdata(self,x=None, xnmin=-5, xnmax=5, n=513):
def trdata(self, x=None, xnmin= -5, xnmax=5, n=513):
"""
Return a discretized transformation model.
@ -66,11 +66,11 @@ class TrCommon2(TrCommon):
"""
if x is None:
xn = np.linspace(xnmin, xnmax, n)
x = self.sigma*xn+self.mean
x = self.sigma * xn + self.mean
else:
xn = (x-self.mean)/self.sigma
xn = (x - self.mean) / self.sigma
yn = (self._dat2gauss(x)-self.ymean)/self.ysigma
yn = (self._dat2gauss(x) - self.ymean) / self.ysigma
return TrData(yn, x, mean=self.mean, sigma=self.sigma)

Loading…
Cancel
Save