|
|
|
@ -15,6 +15,7 @@ from misc import tranproc #, trangood
|
|
|
|
|
from numpy import pi, sqrt, atleast_2d, exp, newaxis #@UnresolvedImport
|
|
|
|
|
from scipy import interpolate, linalg, sparse
|
|
|
|
|
from scipy.special import gamma
|
|
|
|
|
import scipy.special as special
|
|
|
|
|
import scipy.optimize as optimize
|
|
|
|
|
from wafo.misc import meshgrid, nextpow2
|
|
|
|
|
from wafo.wafodata import WafoData
|
|
|
|
@ -27,6 +28,9 @@ import scipy
|
|
|
|
|
import warnings
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
def _invnorm(q):
|
|
|
|
|
return special.ndtri(q)
|
|
|
|
|
|
|
|
|
|
_stats_epan = (1. / 5, 3. / 5, np.inf)
|
|
|
|
|
_stats_biwe = (1. / 7, 5. / 7, 45. / 2)
|
|
|
|
|
_stats_triw = (1. / 9, 350. / 429, np.inf)
|
|
|
|
@ -338,7 +342,7 @@ class _KDE(object):
|
|
|
|
|
self._sigma = np.minimum(np.std(self.dataset, axis= -1, ddof=1), iqr / 1.34)
|
|
|
|
|
#xyzrange = amax - amin
|
|
|
|
|
#offset = xyzrange / 4.0
|
|
|
|
|
offset = 2 * self._sigma
|
|
|
|
|
offset = self._sigma
|
|
|
|
|
if self.xmin is None:
|
|
|
|
|
self.xmin = amin - offset
|
|
|
|
|
else:
|
|
|
|
@ -1042,7 +1046,7 @@ class KRegression(_KDE):
|
|
|
|
|
s0 = grdfun(*args, r=0)
|
|
|
|
|
t0 = grdfun(*args, r=0, y=self.y)
|
|
|
|
|
if self.p==0:
|
|
|
|
|
return t0 / s0
|
|
|
|
|
return (t0 / s0).clip(min=-_REALMAX, max=_REALMAX)
|
|
|
|
|
elif self.p==1:
|
|
|
|
|
s1 = grdfun(*args, r=1)
|
|
|
|
|
s2 = grdfun(*args, r=2)
|
|
|
|
@ -2974,7 +2978,7 @@ def kreg_demo1(hs=None, fast=False, fun='hisj'):
|
|
|
|
|
kreg.p=1
|
|
|
|
|
f1 = kreg(output='plot', title='Kernel regression', plotflag=1)
|
|
|
|
|
f1.plot(label='p=1')
|
|
|
|
|
print(f1.data)
|
|
|
|
|
#print(f1.data)
|
|
|
|
|
plt.plot(x, y, '.', label='data')
|
|
|
|
|
plt.plot(x, y0, 'k', label='True model')
|
|
|
|
|
plt.legend()
|
|
|
|
@ -2983,15 +2987,71 @@ def kreg_demo1(hs=None, fast=False, fun='hisj'):
|
|
|
|
|
|
|
|
|
|
print(kreg.tkde.tkde.inv_hs)
|
|
|
|
|
print(kreg.tkde.tkde.hs)
|
|
|
|
|
def kreg_demo2(n=100):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = np.sort(5*np.random.rand(n,1)-2.5, axis=0)
|
|
|
|
|
y = (np.cos(x)>2*np.random.rand(n, 1)-1).ravel()
|
|
|
|
|
_REALMIN = np.finfo(float).machar.xmin
|
|
|
|
|
_REALMAX = np.finfo(float).machar.xmax
|
|
|
|
|
_EPS = np.finfo(float).eps
|
|
|
|
|
def _logit(p):
|
|
|
|
|
#pc = p.clip(min=_REALMIN)
|
|
|
|
|
return (np.log(p)-np.log1p(-p)).clip(min=-40,max=40)
|
|
|
|
|
def _logitinv(x):
|
|
|
|
|
return 1.0/(np.exp(-x)+1)
|
|
|
|
|
|
|
|
|
|
kreg = KRegression(x.ravel(),y)
|
|
|
|
|
|
|
|
|
|
def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj'):
|
|
|
|
|
x = np.sort(6*np.random.rand(n,1)-3, axis=0)
|
|
|
|
|
y = (np.cos(x)>2*np.random.rand(n, 1)-1).ravel()
|
|
|
|
|
x = x.ravel()
|
|
|
|
|
|
|
|
|
|
kernel = Kernel('gauss',fun=fun)
|
|
|
|
|
hopt = kernel.get_smoothing(x)/2
|
|
|
|
|
if hs is None:
|
|
|
|
|
hs = hopt
|
|
|
|
|
if symmetric:
|
|
|
|
|
xi = np.hstack((x.ravel(),-x.ravel()))
|
|
|
|
|
yi = np.hstack((y, y))
|
|
|
|
|
i = np.argsort(xi)
|
|
|
|
|
x = xi[i]
|
|
|
|
|
y = yi[i]
|
|
|
|
|
|
|
|
|
|
xmin, xmax = x.min(), x.max()
|
|
|
|
|
ni = int(2*(xmax-xmin)/hopt)
|
|
|
|
|
print(ni)
|
|
|
|
|
|
|
|
|
|
xi = np.linspace(xmin-hopt,xmax+hopt, ni)
|
|
|
|
|
c = gridcount(x, xi)
|
|
|
|
|
c0 = gridcount(x[y==True],xi)
|
|
|
|
|
|
|
|
|
|
yi = np.where(c==0, 0, c0/c)
|
|
|
|
|
logyi = np.log(yi).clip(min=-15)
|
|
|
|
|
#plt.scatter(xi,logyi)
|
|
|
|
|
#return
|
|
|
|
|
#print(logyi)
|
|
|
|
|
|
|
|
|
|
gkreg = KRegression(xi, yi, hs=hs, xmin=xmin-2*hopt,xmax=xmax+2*hopt)
|
|
|
|
|
fg = gkreg.eval_grid(xi,output='plotobj', title='Kernel regression', plotflag=1)
|
|
|
|
|
pi = fg.data
|
|
|
|
|
|
|
|
|
|
alpha=0.05
|
|
|
|
|
z0 = -_invnorm(alpha/2)
|
|
|
|
|
|
|
|
|
|
pup = (pi + z0*np.sqrt(pi*(1-pi)/c)).clip(min=0,max=1)
|
|
|
|
|
plo = (pi - z0*np.sqrt(pi*(1-pi)/c)).clip(min=0,max=1)
|
|
|
|
|
#print(fg.data)
|
|
|
|
|
#fg.data = np.exp(fg.data)
|
|
|
|
|
|
|
|
|
|
fg.plot(label='KReg grid')
|
|
|
|
|
|
|
|
|
|
kreg = KRegression(x, y, hs=hs)
|
|
|
|
|
f = kreg(output='plotobj', title='Kernel regression', plotflag=1)
|
|
|
|
|
f.plot()
|
|
|
|
|
f.plot(label='KRegression')
|
|
|
|
|
|
|
|
|
|
plt.plot(xi, pup,'r--', xi, plo,'r--', label='%d CI' % (int(100*(1-alpha))))
|
|
|
|
|
plt.plot(xi, 0.5*np.cos(xi)+.5, label='True model')
|
|
|
|
|
plt.scatter(xi,yi, label='data')
|
|
|
|
|
print(np.nanmax(f.data))
|
|
|
|
|
print(kreg.tkde.tkde.hs)
|
|
|
|
|
plt.legend()
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
def kde_gauss_demo(n=50):
|
|
|
|
@ -3058,4 +3118,4 @@ if __name__ == '__main__':
|
|
|
|
|
#kde_demo2()
|
|
|
|
|
#kreg_demo1(fast=True)
|
|
|
|
|
#kde_gauss_demo()
|
|
|
|
|
kreg_demo1()
|
|
|
|
|
kreg_demo2()
|