Updated doctests

master
Per A Brodtkorb 8 years ago
parent 838675a55b
commit 601b282ca0

@ -21,7 +21,7 @@ from __future__ import absolute_import
import warnings # @UnusedImport
from functools import reduce
from numpy.polynomial import polyutils as pu
from .plotbackend import plotbackend as plt
from wafo.plotbackend import plotbackend as plt
import numpy as np
from numpy import (newaxis, arange, pi)
from scipy.fftpack import dct, idct as _idct
@ -70,33 +70,33 @@ def polyint(p, m=1, k=None):
Examples
--------
The defining property of the antiderivative:
>>> p = np.poly1d([1,1,1])
>>> P = np.polyint(p)
>>> import wafo.polynomial as wp
>>> p = wp.poly1d([1,1,1])
>>> P = wp.polyint(p)
>>> P
poly1d([ 0.33333333, 0.5 , 1. , 0. ])
>>> np.polyder(P) == p
>>> wp.polyder(P) == p
True
The integration constants default to zero, but can be specified:
>>> P = np.polyint(p, 3)
>>> P = wp.polyint(p, 3)
>>> P(0)
0.0
>>> np.polyder(P)(0)
>>> wp.polyder(P)(0)
0.0
>>> np.polyder(P, 2)(0)
>>> wp.polyder(P, 2)(0)
0.0
>>> P = np.polyint(p, 3, k=[6, 5, 3])
>>> P = wp.polyint(p, 3, k=[6, 5, 3])
>>> P
poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ])
Note that 3 = 6 / 2!, and that the constants are given in the order of
integrations. Constant of the highest-order polynomial term comes first:
>>> np.polyder(P, 2)(0)
>>> wp.polyder(P, 2)(0)
6.0
>>> np.polyder(P, 1)(0)
>>> wp.polyder(P, 1)(0)
5.0
>>> P(0)
3.0
@ -160,9 +160,9 @@ def polyder(p, m=1):
Examples
--------
The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is:
>>> p = np.poly1d([1,1,1,1])
>>> p2 = np.polyder(p)
>>> import wafo.polynomial as wp
>>> p = wp.poly1d([1,1,1,1])
>>> p2 = wp.polyder(p)
>>> p2
poly1d([3, 2, 1])
@ -179,11 +179,11 @@ def polyder(p, m=1):
The fourth-order derivative of a 3rd-order polynomial is zero:
>>> np.polyder(p, 2)
>>> wp.polyder(p, 2)
poly1d([6, 2])
>>> np.polyder(p, 3)
>>> wp.polyder(p, 3)
poly1d([6])
>>> np.polyder(p, 4)
>>> wp.polyder(p, 4)
poly1d([ 0.])
"""
@ -234,15 +234,16 @@ def polydeg(x, y):
Example:
-------
>>> import wafo.polynomial as wp
>>> x = np.linspace(0,10,300)
>>> noise = 0.05 * np.random.randn(x.size)
>>> noise = 0.05 * np.sin(100*x)
>>> y = np.sin(x ** 3 / 100) ** 2 + noise
>>> n = polydeg(x,y)
>>> n = wp.polydeg(x,y)
>>> n
21
ys = orthofit(x,y,n);
ys = wp.orthofit(x,y,n);
plt.plot(x, y, '.', x, ys, 'k')
See also
@ -350,16 +351,17 @@ def ortho2poly(p):
Examples
--------
>>> import numpy as np
>>> import wafo.polynomial as wp
>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> p = orthofit(x, y, 3)
>>> p = wp.orthofit(x, y, 3)
>>> p
array([[ 0. , -0.30285714, -0.16071429, 0.08703704],
[ 0. , 2.5 , 2.5 , 2.5 ],
[ 0. , 0. , 2.91666667, 2.13333333]])
>>> ortho2poly(p)
>>> wp.ortho2poly(p)
array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])
>>> np.polyfit(x, y, 3)
>>> wp.polyfit(x, y, 3)
array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])
References
@ -410,10 +412,11 @@ def orthofit(x, y, n):
Example:
-------
>>> import wafo.polynomial as wp
>>> x = np.linspace(0,10,300);
>>> y = np.sin(x**3/100)**2 + 0.05*np.random.randn(x.size)
>>> p = orthofit(x, y, 25)
>>> ys = orthoval(p, x)
>>> p = wp.orthofit(x, y, 25)
>>> ys = wp.orthoval(p, x)
plot(x, y,'.',x, ys, 'k')
@ -481,15 +484,16 @@ def polyreloc(p, x, y=0.0):
Example
-------
>>> import numpy as np
>>> import wafo.polynomial as wp
>>> p = np.arange(6); p.shape = (2,-1)
>>> np.polyval(p,0)
>>> wp.polyval(p,0)
array([3, 4, 5])
>>> np.polyval(p,1)
>>> wp.polyval(p,1)
array([3, 5, 7])
>>> r = polyreloc(p,-1) # move to the left along x-axis
>>> np.polyval(r,-1) # = polyval(p,0)
>>> wp.polyval(r,-1) # = polyval(p,0)
array([3, 4, 5])
>>> np.polyval(r,0) # = polyval(p,1)
>>> wp.polyval(r,0) # = polyval(p,1)
array([3, 5, 7])
"""
@ -534,15 +538,16 @@ def polyrescl(p, x, y=1.0):
Example
-------
>>> import numpy as np
>>> import wafo.polynomial as wp
>>> p = np.arange(6); p.shape = (2,-1)
>>> np.polyval(p,0)
>>> wp.polyval(p,0)
array([3, 4, 5])
>>> np.polyval(p,1)
>>> wp.polyval(p,1)
array([3, 5, 7])
>>> r = polyrescl(p,2) # scale by 2 along x-axis
>>> np.polyval(r,0) # = polyval(p,0)
>>> r = wp.polyrescl(p,2) # scale by 2 along x-axis
>>> wp.polyval(r,0) # = polyval(p,0)
array([ 3., 4., 5.])
>>> np.polyval(r,2) # = polyval(p,1)
>>> wp.polyval(r,2) # = polyval(p,1)
array([ 3., 5., 7.])
"""
@ -577,11 +582,12 @@ def polytrim(p):
Example
-------
>>> import wafo.polynomial as wp
>>> p = [0,1,2]
>>> polytrim(p)
>>> wp.polytrim(p)
array([1, 2])
>>> p1 = [[0,0],[1,2],[3,4]]
>>> polytrim(p1)
>>> wp.polytrim(p1)
array([[1, 2],
[3, 4]])
"""
@ -620,7 +626,8 @@ def poly2hstr(p, variable='x'):
Examples
--------
>>> poly2hstr([1, 1, 2], 's' )
>>> import wafo.polynomial as wp
>>> wp.poly2hstr([1, 1, 2], 's' )
'(s + 1)*s + 2'
See also
@ -710,7 +717,8 @@ def poly2str(p, variable='x'):
Examples
--------
>>> poly2str([1, 1, 2], 's' )
>>> import wafo.polynomial as wp
>>> wp.poly2str([1, 1, 2], 's' )
's**2 + s + 2'
"""
thestr = "0"
@ -787,11 +795,12 @@ def polyshift(py, a=-1, b=1):
Example
-------
>>> import wafo.polynomial as wp
>>> py = [1, 0]
>>> px = polyshift(py,0,5)
>>> polyval(px,[0, 2.5, 5]) #% This is the same as the line below
>>> px = wp.polyshift(py,0,5)
>>> wp.polyval(px,[0, 2.5, 5]) #% This is the same as the line below
array([-1., 0., 1.])
>>> polyval(py,[-1, 0, 1 ])
>>> wp.polyval(py,[-1, 0, 1 ])
array([-1, 0, 1])
"""
@ -830,11 +839,12 @@ def polyishift(px, a=-1, b=1):
Example
-------
>>> import wafo.polynomial as wp
>>> px = [1, 0]
>>> py = polyishift(px,0,5);
>>> polyval(px,[0, 2.5, 5]) #% This is the same as the line below
>>> py = wp.polyishift(px,0,5);
>>> wp.polyval(px,[0, 2.5, 5]) #% This is the same as the line below
array([ 0. , 2.5, 5. ])
>>> polyval(py,[-1, 0, 1])
>>> wp.polyval(py,[-1, 0, 1])
array([ 0. , 2.5, 5. ])
"""
if (a == -1) & (b == 1):
@ -892,9 +902,10 @@ def poly2cheb(p, a=-1, b=1):
Examples
--------
>>> import numpy as np
>>> import wafo.polynomial as wp
>>> p = np.arange(5)
>>> ck = poly2cheb(p)
>>> cheb2poly(ck)
>>> ck = wp.poly2cheb(p)
>>> wp.cheb2poly(ck)
array([ 1., 2., 3., 4.])
Reference
@ -934,12 +945,12 @@ def cheb2poly(ck, a=-1, b=1):
Examples
--------
>>> import numpy as np
>>> import wafo.polynomial as wp
>>> p = np.arange(5)
>>> ck = poly2cheb(p)
>>> cheb2poly(ck)
>>> ck = wp.poly2cheb(p)
>>> wp.cheb2poly(ck)
array([ 1., 2., 3., 4.])
References
----------
http://en.wikipedia.org/wiki/Chebyshev_polynomials
@ -990,8 +1001,9 @@ def chebextr(n):
Examples
--------
>>> x = chebextr(4)
>>> chebpoly(4,x)
>>> import wafo.polynomial as wp
>>> x = wp.chebextr(4)
>>> wp.chebpoly(4,x)
array([ 1., -1., 1., -1., 1.])
@ -1021,15 +1033,16 @@ def chebroot(n, kind=1):
Examples
--------
>>> import numpy as np
>>> x = chebroot(3)
>>> np.abs(chebpoly(3,x))<1e-15
array([ True, True, True], dtype=bool)
>>> chebpoly(3)
>>> import wafo.polynomial as wp
>>> x = wp.chebroot(3)
>>> np.allclose(wp.chebpoly(3,x), [0, 0, 0])
True
>>> wp.chebpoly(3)
array([ 4., 0., -3., 0.])
>>> x2 = chebroot(4,kind=2)
>>> np.abs(chebpoly(4,x2,kind=2))<1e-15
array([ True, True, True, True], dtype=bool)
>>> chebpoly(4,kind=2)
>>> x2 = wp.chebroot(4, kind=2)
>>> np.allclose(wp.chebpoly(4,x2,kind=2), [0, 0, 0, 0])
True
>>> wp.chebpoly(4,kind=2)
array([ 16., 0., -12., 0., 1.])
@ -1071,15 +1084,16 @@ def chebpoly(n, x=None, kind=1):
Examples
--------
>>> import numpy as np
>>> x = chebroot(3)
>>> np.abs(chebpoly(3,x))<1e-15
array([ True, True, True], dtype=bool)
>>> chebpoly(3)
>>> import wafo.polynomial as wp
>>> x = wp.chebroot(3)
>>> np.allclose(wp.chebpoly(3,x), [0, 0, 0])
True
>>> wp.chebpoly(3)
array([ 4., 0., -3., 0.])
>>> x2 = chebroot(4,kind=2)
>>> np.abs(chebpoly(4,x2,kind=2))<1e-15
array([ True, True, True, True], dtype=bool)
>>> chebpoly(4,kind=2)
>>> x2 = wp.chebroot(4,kind=2)
>>> np.allclose(wp.chebpoly(4,x2,kind=2), [0, 0, 0, 0])
True
>>> wp.chebpoly(4,kind=2)
array([ 16., 0., -12., 0., 1.])
@ -1131,14 +1145,15 @@ def chebfit(fun, n=10, a=-1, b=1, trace=False):
Fit exp(x)
>>> import matplotlib.pyplot as plt
>>> import wafo.polynomial as wp
>>> a = 0; b = 2
>>> ck = chebfit(np.exp,7,a,b);
>>> ck = wp.chebfit(np.exp,7,a,b);
>>> x = np.linspace(0,4);
>>> x1 = chebroot(9)*(b-a)/2+(b+a)/2
>>> ck1 = chebfit(np.exp(x1))
>>> x1 = wp.chebroot(9)*(b-a)/2+(b+a)/2
>>> ck1 = wp.chebfit(np.exp(x1))
h=plt.plot(x, np.exp(x), 'r', x, chebval(x,ck,a,b), 'g.')
h = plt.plot(x,np.exp(x), 'r', x, chebval(x,ck1,a,b),'g.')
h=plt.plot(x, np.exp(x), 'r', x, wp.chebval(x,ck,a,b), 'g.')
h = plt.plot(x,np.exp(x), 'r', x, wp.chebval(x,ck1,a,b),'g.')
plt.close()
See also
@ -1209,22 +1224,23 @@ def chebfit_dct(f, n=(10, ), domain=None):
Fit exponential function
>>> import matplotlib.pyplot as plt
>>> import wafo.polynomial as wp
>>> domain = (0, 2)
>>> ck = chebfit_dct(np.exp, 7, domain)
>>> ck = wp.chebfit_dct(np.exp, 7, domain)
>>> np.allclose(ck, [3.44152387e+00, 3.07252345e+00, 7.38000848e-01,
... 1.20520053e-01, 1.48805268e-02, 1.47579673e-03,
... 1.21719524e-04])
True
>>> x1 = map_to_interval(chebroot(9), *domain)
>>> ck1 = chebfit(np.exp(x1))
>>> x1 = wp.map_to_interval(wp.chebroot(9), *domain)
>>> ck1 = wp.chebfit(np.exp(x1))
>>> np.allclose(ck1, [5.40019009e-07, 8.69418381e-06, 1.22261037e-04,
... 1.47582673e-03, 1.48805283e-02, 1.20520053e-01,
... 7.38000848e-01, 3.07252345e+00, 3.44152387e+00])
True
x = np.linspace(0,4)
h = plt.plot(x, np.exp(x), 'r', x, chebvalnd(ck, x,ck,a,b), 'g.')
h = plt.plot(x, np.exp(x), 'r', x, chebvalnd(ck1, x,ck1,a,b),'b.')
h = plt.plot(x, np.exp(x), 'r', x, wp.chebvalnd(ck, x,ck,a,b), 'g.')
h = plt.plot(x, np.exp(x), 'r', x, wp.chebvalnd(ck1, x,ck1,a,b),'b.')
plt.close()
See also
@ -1280,11 +1296,12 @@ def idct(x, n=None):
Examples
--------
>>> import numpy as np
>>> import wafo.polynomial as wp
>>> x = np.arange(5)*1.0
>>> np.abs(x-idct(dct(x)))<1e-14
array([ True, True, True, True, True], dtype=bool)
>>> np.abs(x-dct(idct(x)))<1e-14
array([ True, True, True, True, True], dtype=bool)
>>> np.allclose(idct(dct(x)), x)
True
>>> np.allclose(dct(idct(x)), x)
True
Reference
---------
@ -1358,18 +1375,19 @@ def chebval(x, ck, a=-1, b=1, kind=1, fill=None):
--------
Plot Chebychev polynomial of the first kind and order 4:
>>> import matplotlib.pyplot as plt
>>> import wafo.polynomial as wp
>>> x = np.linspace(-1,1)
>>> ck = np.zeros(5); ck[-1]=1
>>> y = chebval(x,ck)
>>> y = wp.chebval(x,ck)
h = plt.plot(x, y, x, chebpoly(4,x),'.')
h = plt.plot(x, y, x, wp.chebpoly(4,x),'.')
plt.close()
Fit exponential function:
>>> import matplotlib.pyplot as plt
>>> ck = chebfit(np.exp,7,0,2)
>>> ck = wp.chebfit(np.exp,7,0,2)
>>> x = np.linspace(0,4);
>>> y2 = chebval(x,ck,0,2)
>>> y2 = wp.chebval(x,ck,0,2)
h=plt.plot(x, y2, 'g', x, np.exp(x))
plt.close()
@ -1417,10 +1435,11 @@ def chebder(ck, a=-1, b=1):
Fit exponential function:
>>> import matplotlib.pyplot as plt
>>> ck = chebfit(np.exp,7,0,2)
>>> import wafo.polynomial as wp
>>> ck = wp.chebfit(np.exp,7,0,2)
>>> x = np.linspace(0,4)
>>> ck2 = chebder(ck,0,2)
>>> y = chebval(x,ck2,0,2)
>>> ck2 = wp.chebder(ck,0,2)
>>> y = wp.chebval(x,ck2,0,2)
h = plt.plot(x, y, 'g', x, np.exp(x), 'r')
plt.close()
@ -1470,12 +1489,13 @@ def chebint(ck, a=-1, b=1):
--------
Fit exponential function:
>>> import matplotlib.pyplot as plt
>>> ck = chebfit(np.exp,7,0,2)
>>> import wafo.polynomial as wp
>>> ck = wp.chebfit(np.exp, 7, 0, 2)
>>> x = np.linspace(0,4)
>>> ck2 = chebint(ck,0,2);
>>> y =chebval(x,ck2,0,2)
>>> ck2 = wp.chebint(ck, 0, 2);
>>> y = wp.chebval(x, ck2, 0, 2)
h=plt.plot(x,y,'g',x,np.exp(x),'r.')
h = plt.plot(x, y, 'g', x, np.exp(x), 'r.')
plt.close()
See also
@ -1713,14 +1733,15 @@ def padefit(c, m=None):
Pade approximation to exp(x)
>>> import scipy.special as sp
>>> import matplotlib.pyplot as plt
>>> c = poly1d(1./sp.gamma(np.r_[6+1:0:-1]))
>>> [p, q] = padefit(c)
>>> import wafo.polynomial as wp
>>> c = wp.poly1d(1./sp.gamma(np.r_[6+1:0:-1]))
>>> [p, q] = wp.padefit(c)
>>> p; q
poly1d([ 0.00277778, 0.03333333, 0.2 , 0.66666667, 1. ])
poly1d([ 0.03333333, -0.33333333, 1. ])
x = np.linspace(0,4)
h = plt.plot(x,c(x),x,p(x)/q(x),'g-', x,np.exp(x),'r.')
h = plt.plot(x, c(x), x, p(x)/q(x), 'g-', x,np.exp(x), 'r.')
plt.close()
See also
@ -1781,13 +1802,14 @@ def padefitlsq(fun, m, k, a=-1, b=1, trace=False, x=None, end_points=True):
Pade approximation to exp(x) between 0 and 2
>>> import matplotlib.pyplot as plt
>>> [c1, c2] = padefitlsq(np.exp,3,3,0,2)
>>> import wafo.polynomial as wp
>>> [c1, c2] = wp.padefitlsq(np.exp,3,3,0,2)
>>> c1; c2
poly1d([ 0.01443847, 0.128842 , 0.55284547, 0.99999962])
poly1d([-0.0049658 , 0.07610473, -0.44716929, 1. ])
x = np.linspace(0,4)
h = plt.plot(x, polyval(c1,x)/polyval(c2,x),'g')
h = plt.plot(x, wp.polyval(c1,x)/wp.polyval(c2,x),'g')
h = plt.plot(x, np.exp(x), 'r')
See also

Loading…
Cancel
Save