master
Per.Andreas.Brodtkorb 11 years ago
parent 31f80c5798
commit 5c84825641

@ -2,20 +2,20 @@ from __future__ import division
import warnings
import copy
import numpy as np
from numpy import pi, sqrt, ones, zeros #@UnresolvedImport
from numpy import pi, sqrt, ones, zeros # @UnresolvedImport
from scipy import integrate as intg
import scipy.special.orthogonal as ort
from scipy import special as sp
from wafo.plotbackend import plotbackend as plt
from scipy.integrate import simps, trapz #@UnusedImport
from scipy.integrate import simps, trapz # @UnusedImport
from wafo.misc import is_numlike
from wafo.demos import humps
_POINTS_AND_WEIGHTS = {}
__all__ = ['dea3', 'clencurt', 'romberg',
'h_roots','j_roots', 'la_roots','p_roots','qrule',
'gaussq', 'richardson', 'quadgr', 'qdemo']
'h_roots', 'j_roots', 'la_roots', 'p_roots', 'qrule',
'gaussq', 'richardson', 'quadgr', 'qdemo']
def dea3(v0, v1, v2):
@ -71,11 +71,11 @@ def dea3(v0, v1, v2):
'''
E0, E1, E2 = np.atleast_1d(v0, v1, v2)
abs = np.abs #@ReservedAssignment
max = np.maximum #@ReservedAssignment
abs = np.abs # @ReservedAssignment
max = np.maximum # @ReservedAssignment
ten = 10.0
one = ones(1)
small = np.finfo(float).eps #1.0e-16 #spacing(one)
small = np.finfo(float).eps # 1.0e-16 #spacing(one)
delta2 = E2 - E1
delta1 = E1 - E0
err2 = abs(delta2)
@ -87,7 +87,7 @@ def dea3(v0, v1, v2):
abserr = result.copy()
converged = (err1 <= tol1) & (err2 <= tol2).ravel()
k0, = converged.nonzero()
if k0.size > 0 :
if k0.size > 0:
#%C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE
#%C ACCURACY, CONVERGENCE IS ASSUMED.
result[k0] = E2[k0]
@ -95,24 +95,26 @@ def dea3(v0, v1, v2):
k1, = (1 - converged).nonzero()
if k1.size > 0 :
if k1.size > 0:
with warnings.catch_warnings():
warnings.simplefilter("ignore") # ignore division by zero and overflow
# ignore division by zero and overflow
warnings.simplefilter("ignore")
ss = one / delta2[k1] - one / delta1[k1]
smallE2 = (abs(ss * E1[k1]) <= 1.0e-3).ravel()
k2 = k1[smallE2.nonzero()]
if k2.size > 0 :
if k2.size > 0:
result[k2] = E2[k2]
abserr[k2] = err1[k2] + err2[k2] + E2[k2] * small * ten
k4, = (1 - smallE2).nonzero()
if k4.size > 0 :
if k4.size > 0:
k3 = k1[k4]
result[k3] = E1[k3] + one / ss[k4]
abserr[k3] = err1[k3] + err2[k3] + abs(result[k3] - E2[k3])
return result, abserr
def clencurt(fun, a, b, n0=5, trace=False, *args):
'''
Numerical evaluation of an integral, Clenshaw-Curtis method.
@ -161,7 +163,6 @@ def clencurt(fun, a, b, n0=5, trace=False, *args):
Numerische Matematik, Vol. 2, pp. 197--205
'''
#% make sure n is even
n = 2 * n0
a, b = np.atleast_1d(a, b)
@ -184,7 +185,8 @@ def clencurt(fun, a, b, n0=5, trace=False, *args):
x0 = np.flipud(fun[:, 0])
n = len(x0) - 1
if abs(x - x0) > 1e-8:
raise ValueError('Input vector x must equal cos(pi*s/n)*(b-a)/2+(b+a)/2')
raise ValueError(
'Input vector x must equal cos(pi*s/n)*(b-a)/2+(b+a)/2')
f = np.flipud(fun[:, 1::])
@ -196,27 +198,26 @@ def clencurt(fun, a, b, n0=5, trace=False, *args):
f[0, :] = f[0, :] / 2
f[n, :] = f[n, :] / 2
## % x = cos(pi*0:n/n)
## % f = f(x)
## %
## % N+1
## % c(k) = (2/N) sum f''(n)*cos(pi*(2*k-2)*(n-1)/N), 1 <= k <= N/2+1.
## % n=1
# % x = cos(pi*0:n/n)
# % f = f(x)
# %
# % N+1
# % c(k) = (2/N) sum f''(n)*cos(pi*(2*k-2)*(n-1)/N), 1 <= k <= N/2+1.
# % n=1
fft = np.fft.fft
tmp = np.real(fft(f[:n, :], axis=0))
c = 2 / n * (tmp[0:n / 2 + 1, :] + np.cos(np.pi * s2) * f[n, :])
## % old call
## % c = 2/n * cos(s2*s'*pi/n) * f
# % old call
# % c = 2/n * cos(s2*s'*pi/n) * f
c[0, :] = c[0, :] / 2
c[n / 2, :] = c[n / 2, :] / 2
## % alternative call
## % c = dct(f)
# % alternative call
# % c = dct(f)
c = c[0:n / 2 + 1, :] / ((s2 - 1) * (s2 + 1))
Q = (af - bf) * np.sum(c, axis=0)
#Q = (a-b).*sum( c(1:n/2+1,:)./repmat((s2-1).*(s2+1),1,Na))
# Q = (a-b).*sum( c(1:n/2+1,:)./repmat((s2-1).*(s2+1),1,Na))
abserr = (bf - af) * np.abs(c[n / 2, :])
@ -225,6 +226,7 @@ def clencurt(fun, a, b, n0=5, trace=False, *args):
Q = np.reshape(Q, a_shape)
return Q, abserr
def romberg(fun, a, b, releps=1e-3, abseps=1e-3):
'''
Numerical integration with the Romberg method
@ -282,14 +284,15 @@ def romberg(fun, a, b, releps=1e-3, abseps=1e-3):
Un5 = np.sum(fun(a + np.arange(1, 2 * ipower, 2) * h)) * h
# trapezoidal approximations
#T2n = 0.5 * (Tn + Un) = 0.5*Tn + Un5
# T2n = 0.5 * (Tn + Un) = 0.5*Tn + Un5
rom[two, 0] = 0.5 * rom[one, 0] + Un5
fp[i] = 4 * fp[i - 1]
# Richardson extrapolation
for k in xrange(i):
#rom(2,k+1)=(fp(k)*rom(2,k)-rom(1,k))/(fp(k)-1)
rom[two, k + 1] = rom[two, k] + (rom[two, k] - rom[one, k]) / (fp[k] - 1)
# rom(2,k+1)=(fp(k)*rom(2,k)-rom(1,k))/(fp(k)-1)
rom[two, k + 1] = rom[two, k] + \
(rom[two, k] - rom[one, k]) / (fp[k] - 1)
Ih1 = Ih2
Ih2 = Ih4
@ -308,6 +311,7 @@ def romberg(fun, a, b, releps=1e-3, abseps=1e-3):
ipower *= 2
return res, abserr
def h_roots(n, method='newton'):
'''
Returns the roots (x) of the nth order Hermite polynomial,
@ -351,7 +355,6 @@ def h_roots(n, method='newton'):
prentice-hall, Englewood cliffs, n.j.
'''
if not method.startswith('n'):
return ort.h_roots(n)
else:
@ -359,7 +362,7 @@ def h_roots(n, method='newton'):
max_iter = 10
releps = 3e-14
C = [9.084064e-01, 5.214976e-02, 2.579930e-03, 3.986126e-03]
#PIM4=0.7511255444649425
# PIM4=0.7511255444649425
PIM4 = np.pi ** (-1. / 4)
# The roots are symmetric about the origin, so we have to
@ -378,7 +381,7 @@ def h_roots(n, method='newton'):
k0 = 0
kp1 = 1
for _its in xrange(max_iter):
#Newtons method carried out simultaneously on the roots.
# Newtons method carried out simultaneously on the roots.
L[k0, :] = 0
L[kp1, :] = PIM4
@ -389,8 +392,8 @@ def h_roots(n, method='newton'):
k0 = kp1
kp1 = np.mod(kp1 + 1, 3)
L[kp1, :] = z * sqrt(2 / j) * L[k0, :] - np.sqrt((j - 1) / j) * L[km1, :]
L[kp1, :] = (z * sqrt(2 / j) * L[k0, :] -
np.sqrt((j - 1) / j) * L[km1, :])
# L now contains the desired Hermite polynomials.
# We next compute pp, the derivatives,
@ -400,7 +403,7 @@ def h_roots(n, method='newton'):
pp = sqrt(2 * n) * L[k0, :]
dz = L[kp1, :] / pp
z = z - dz # Newtons formula.
z = z - dz # Newtons formula.
if not np.any(abs(dz) > releps):
break
@ -412,12 +415,13 @@ def h_roots(n, method='newton'):
x[0:m] = z # Store the root
x[n - 1:n - m - 1:-1] = -z # and its symmetric counterpart.
w[0:m] = 2. / pp ** 2 # Compute the weight
w[n - 1:n - m - 1:-1] = w[0:m] # and its symmetric counterpart.
w[n - 1:n - m - 1:-1] = w[0:m] # and its symmetric counterpart.
return x, w
def j_roots(n, alpha, beta, method='newton'):
'''
Returns the roots (x) of the nth order Jacobi polynomial, P^(alpha,beta)_n(x)
Returns the roots of the nth order Jacobi polynomial, P^(alpha,beta)_n(x)
and weights (w) to use in Gaussian Quadrature over [-1,1] with weighting
function (1-x)**alpha (1+x)**beta with alpha,beta > -1.
@ -471,21 +475,21 @@ def j_roots(n, alpha, beta, method='newton'):
# Initial approximations to the roots go into z.
alfbet = alpha + beta
z = np.cos(np.pi * (np.arange(1, n + 1) - 0.25 + 0.5 * alpha) / (n + 0.5 * (alfbet + 1)))
z = np.cos(np.pi * (np.arange(1, n + 1) - 0.25 + 0.5 * alpha) /
(n + 0.5 * (alfbet + 1)))
L = zeros((3, len(z)))
k0 = 0
kp1 = 1
for _its in xrange(max_iter):
#Newton's method carried out simultaneously on the roots.
# Newton's method carried out simultaneously on the roots.
tmp = 2 + alfbet
L[k0, :] = 1
L[kp1, :] = (alpha - beta + tmp * z) / 2
for j in xrange(2, n + 1):
#Loop up the recurrence relation to get the Jacobi
#polynomials evaluated at z.
# Loop up the recurrence relation to get the Jacobi
# polynomials evaluated at z.
km1 = k0
k0 = kp1
kp1 = np.mod(kp1 + 1, 3)
@ -497,31 +501,33 @@ def j_roots(n, alpha, beta, method='newton'):
L[kp1, :] = (b * L[k0, :] - c * L[km1, :]) / a
#L now contains the desired Jacobi polynomials.
#We next compute pp, the derivatives with a standard
# L now contains the desired Jacobi polynomials.
# We next compute pp, the derivatives with a standard
# relation involving the polynomials of one lower order.
pp = (n * (alpha - beta - tmp * z) * L[kp1, :] + 2 * (n + alpha) * (n + beta) * L[k0, :]) / (tmp * (1 - z ** 2))
pp = (n * (alpha - beta - tmp * z) * L[kp1, :] +
2 * (n + alpha) * (n + beta) * L[k0, :]) / (tmp * (1 - z ** 2))
dz = L[kp1, :] / pp
z = z - dz # Newton's formula.
z = z - dz # Newton's formula.
if not any(abs(dz) > releps * abs(z)):
break
else:
warnings.warn('too many iterations in jrule')
x = z # %Store the root and the weight.
w = np.exp(sp.gammaln(alpha + n) + sp.gammaln(beta + n) - sp.gammaln(n + 1) -
sp.gammaln(alpha + beta + n + 1)) * tmp * 2 ** alfbet / (pp * L[k0, :])
x = z # %Store the root and the weight.
f = (sp.gammaln(alpha + n) + sp.gammaln(beta + n) -
sp.gammaln(n + 1) - sp.gammaln(alpha + beta + n + 1))
w = (np.exp(f) * tmp * 2 ** alfbet / (pp * L[k0, :]))
return x, w
def la_roots(n, alpha=0, method='newton'):
'''
Returns the roots (x) of the nth order generalized (associated) Laguerre
polynomial, L^(alpha)_n(x), and weights (w) to use in Gaussian quadrature over
[0,inf] with weighting function exp(-x) x**alpha with alpha > -1.
polynomial, L^(alpha)_n(x), and weights (w) to use in Gaussian quadrature
over [0,inf] with weighting function exp(-x) x**alpha with alpha > -1.
Parameters
----------
@ -597,8 +603,9 @@ def la_roots(n, alpha=0, method='newton'):
k0 = kp1
kp1 = np.mod(kp1 + 1, 3)
L[kp1, k] = ((2 * jj - 1 + alpha - z[k]) * L[k0, k] - (jj - 1 + alpha) * L[km1, k]) / jj
#end
L[kp1, k] = ((2 * jj - 1 + alpha - z[k]) * L[
k0, k] - (jj - 1 + alpha) * L[km1, k]) / jj
# end
#%L now contains the desired Laguerre polynomials.
#%We next compute pp, the derivatives with a standard
#% relation involving the polynomials of one lower order.
@ -607,10 +614,9 @@ def la_roots(n, alpha=0, method='newton'):
pp[k] = (n * L[kp1, k] - (n + alpha) * Lp[k]) / z[k]
dz[k] = L[kp1, k] / pp[k]
z[k] = z[k] - dz[k]# % Newton?s formula.
z[k] = z[k] - dz[k] # % Newton?s formula.
#%k = find((abs(dz) > releps.*z))
if not np.any(abs(dz) > releps):
break
else:
@ -620,7 +626,8 @@ def la_roots(n, alpha=0, method='newton'):
w = -np.exp(sp.gammaln(alpha + n) - sp.gammaln(n)) / (pp * n * Lp)
return x, w
def p_roots(n, method='newton', a= -1, b=1):
def p_roots(n, method='newton', a=-1, b=1):
'''
Returns the roots (x) of the nth order Legendre polynomial, P_n(x),
and weights (w) to use in Gaussian Quadrature over [-1,1] with weighting
@ -658,8 +665,8 @@ def p_roots(n, method='newton', a= -1, b=1):
References
----------
[1] Davis and Rabinowitz (1975) 'Methods of Numerical Integration', page 365,
Academic Press.
[1] Davis and Rabinowitz (1975) 'Methods of Numerical Integration',
page 365, Academic Press.
[2] Golub, G. H. and Welsch, J. H. (1969)
'Calculation of Gaussian Quadrature Rules'
@ -685,7 +692,6 @@ def p_roots(n, method='newton', a= -1, b=1):
# Compute the zeros of the N+1 Legendre Polynomial
# using the recursion relation and the Newton-Raphson method
# Legendre-Gauss Polynomials
L = zeros((3, m))
@ -698,7 +704,8 @@ def p_roots(n, method='newton', a= -1, b=1):
# Compute the zeros of the N+1 Legendre Polynomial
# using the recursion relation and the Newton-Raphson method
# Iterate until new points are uniformly within epsilon of old points
# Iterate until new points are uniformly within epsilon of old
# points
k = slice(m)
k0 = 0
kp1 = 1
@ -710,7 +717,8 @@ def p_roots(n, method='newton', a= -1, b=1):
km1 = k0
k0 = kp1
kp1 = np.mod(k0 + 1, 3)
L[kp1, k] = ((2 * jj - 1) * xo[k] * L[k0, k] - (jj - 1) * L[km1, k]) / jj
L[kp1, k] = ((2 * jj - 1) * xo[k] * L[
k0, k] - (jj - 1) * L[km1, k]) / jj
Lp[k] = n * (L[k0, k] - xo[k] * L[kp1, k]) / (1 - xo[k] ** 2)
@ -747,14 +755,18 @@ def p_roots(n, method='newton', a= -1, b=1):
d4pn = (6. * xo * d3pn + (6 - e1) * d2pn) / den
u = pk / dpn
v = d2pn / dpn
h = -u * (1 + (.5 * u) * (v + u * (v * v - u * d3pn / (3 * dpn))))
p = pk + h * (dpn + (.5 * h) * (d2pn + (h / 3) * (d3pn + .25 * h * d4pn)))
h = (-u * (1 + (.5 * u) * (v + u *
(v * v - u * d3pn / (3 * dpn)))))
p = (pk + h * (dpn + (.5 * h) * (d2pn + (h / 3) *
(d3pn + .25 * h * d4pn))))
dp = dpn + h * (d2pn + (.5 * h) * (d3pn + h * d4pn / 3))
h = h - p / dp
xo = xo + h
x = -xo - h
fx = d1 - h * e1 * (pk + (h / 2) * (dpn + (h / 3) * (d2pn + (h / 4) * (d3pn + (.2 * h) * d4pn))))
fx = (d1 - h * e1 * (pk + (h / 2) *
(dpn + (h / 3) * (d2pn + (h / 4) *
(d3pn + (.2 * h) * d4pn)))))
w = 2 * (1 - x ** 2) / (fx ** 2)
if (m + m) > n:
@ -766,7 +778,6 @@ def p_roots(n, method='newton', a= -1, b=1):
x = np.hstack((x, -x[m - 1::-1]))
w = np.hstack((w, w[m - 1::-1]))
if (a != -1) | (b != 1):
# Linear map from[-1,1] to [a,b]
dh = (b - a) / 2
@ -775,6 +786,7 @@ def p_roots(n, method='newton', a= -1, b=1):
return x, w
def qrule(n, wfun=1, alpha=0, beta=0):
'''
Return nodes and weights for Gaussian quadratures.
@ -785,7 +797,7 @@ def qrule(n, wfun=1, alpha=0, beta=0):
number of base points
wfun : integer
defining the weight function, p(x). (default wfun = 1)
1,11,21: p(x) = 1 a =-1, b = 1 Gauss-Legendre
1,11,21: p(x) = 1 a =-1, b = 1 Gauss-Legendre
2,12 : p(x) = exp(-x^2) a =-inf, b = inf Hermite
3,13 : p(x) = x^alpha*exp(-x) a = 0, b = inf Laguerre
4,14 : p(x) = (x-a)^alpha*(b-x)^beta a =-1, b = 1 Jacobi
@ -833,38 +845,38 @@ def qrule(n, wfun=1, alpha=0, beta=0):
if (alpha <= -1) | (beta <= -1):
raise ValueError('alpha and beta must be greater than -1')
if wfun == 1: # Gauss-Legendre
if wfun == 1: # Gauss-Legendre
[bp, wf] = p_roots(n)
elif wfun == 2: # Hermite
elif wfun == 2: # Hermite
[bp, wf] = h_roots(n)
elif wfun == 3: # Generalized Laguerre
elif wfun == 3: # Generalized Laguerre
[bp, wf] = la_roots(n, alpha)
elif wfun == 4: #Gauss-Jacobi
elif wfun == 4: # Gauss-Jacobi
[bp, wf] = j_roots(n, alpha, beta)
elif wfun == 5: # p(x)=1/sqrt((x-a)*(b-x)), a=-1 and b=1 (default)
elif wfun == 5: # p(x)=1/sqrt((x-a)*(b-x)), a=-1 and b=1 (default)
jj = np.arange(1, n + 1)
wf = ones(n) * np.pi / n
bp = np.cos((2 * jj - 1) * np.pi / (2 * n))
elif wfun == 6: # p(x)=sqrt((x-a)*(b-x)), a=-1 and b=1
elif wfun == 6: # p(x)=sqrt((x-a)*(b-x)), a=-1 and b=1
jj = np.arange(1, n + 1)
xj = jj * np.pi / (n + 1)
wf = np.pi / (n + 1) * np.sin(xj) ** 2
bp = np.cos(xj)
elif wfun == 7: # p(x)=sqrt((x-a)/(b-x)), a=0 and b=1
elif wfun == 7: # p(x)=sqrt((x-a)/(b-x)), a=0 and b=1
jj = np.arange(1, n + 1)
xj = (jj - 0.5) * pi / (2 * n + 1)
bp = np.cos(xj) ** 2
wf = 2 * np.pi * bp / (2 * n + 1)
elif wfun == 8: # p(x)=1/sqrt(b-x), a=0 and b=1
elif wfun == 8: # p(x)=1/sqrt(b-x), a=0 and b=1
[bp1, wf1] = p_roots(2 * n)
k, = np.where(0 <= bp1)
wf = 2 * wf1[k]
bp = 1 - bp1[k] ** 2
elif wfun == 9: # p(x)=np.sqrt(b-x), a=0 and b=1
elif wfun == 9: # p(x)=np.sqrt(b-x), a=0 and b=1
[bp1, wf1] = p_roots(2 * n + 1)
k, = np.where(0 < bp1)
wf = 2 * bp1[k] ** 2 * wf1[k]
@ -875,7 +887,7 @@ def qrule(n, wfun=1, alpha=0, beta=0):
def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
trace=False, args=None):
trace=False, args=None):
'''
Numerically evaluate integral, Gauss quadrature.
@ -885,7 +897,8 @@ def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
a,b : array-like
lower and upper integration limits, respectively.
reltol, abstol : real scalars, optional
relative and absolute tolerance, respectively. (default reltol=abstool=1e-3).
relative and absolute tolerance, respectively.
(default reltol=abstool=1e-3).
wfun : scalar integer, optional
defining the weight function, p(x). (default wfun = 1)
1 : p(x) = 1 a =-1, b = 1 Gauss-Legendre
@ -964,7 +977,8 @@ def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
a_shape = np.atleast_1d(A.shape)
b_shape = np.atleast_1d(B.shape)
if np.prod(a_shape) == 1: # make sure the integration limits have correct size
# make sure the integration limits have correct size
if np.prod(a_shape) == 1:
A = A * ones(b_shape)
a_shape = b_shape
elif np.prod(b_shape) == 1:
@ -972,7 +986,6 @@ def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
elif any(a_shape != b_shape):
raise ValueError('The integration limits must have equal size!')
if args is None:
num_parameters = 0
else:
@ -980,7 +993,7 @@ def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
P0 = copy.deepcopy(args)
isvector1 = zeros(num_parameters)
nk = np.prod(a_shape) #% # of integrals we have to compute
nk = np.prod(a_shape) # % # of integrals we have to compute
for ix in xrange(num_parameters):
if is_numlike(P0[ix]):
p0_shape = np.shape(P0[ix])
@ -992,25 +1005,23 @@ def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
nk = Np0
A = A * ones(a_shape)
B = B * ones(a_shape)
elif nk != Np0:
elif nk != Np0:
raise ValueError('The input must have equal size!')
P0[ix].shape = (-1, 1) # make sure it is a column
P0[ix].shape = (-1, 1) # make sure it is a column
k = np.arange(nk)
val = zeros(nk)
val_old = zeros(nk)
abserr = zeros(nk)
#setup mapping parameters
# setup mapping parameters
A.shape = (-1, 1)
B.shape = (-1, 1)
jacob = (B - A) / 2
shift = 1
if wfun == 1:# Gauss-legendre
if wfun == 1: # Gauss-legendre
dx = jacob
elif wfun == 2 or wfun == 3:
shift = 0
@ -1041,19 +1052,17 @@ def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
dx = dx.ravel()
if trace:
x_trace = [0, ]*max_iter
y_trace = [0, ]*max_iter
x_trace = [0, ] * max_iter
y_trace = [0, ] * max_iter
if num_parameters > 0:
ix_vec, = np.where(isvector1)
if len(ix_vec):
P1 = copy.copy(P0)
#% Break out of the iteration loop for three reasons:
#% 1) the last update is very small (compared to int and compared to reltol)
#% 2) There are more than 11 iterations. This should NEVER happen.
# Break out of the iteration loop for three reasons:
# 1) the last update is very small (compared to int and to reltol)
# 2) There are more than 11 iterations. This should NEVER happen.
for ix in xrange(max_iter):
x_and_w = 'wfun%d_%d_%g_%g' % (wfun, gn, alpha, beta)
@ -1066,7 +1075,6 @@ def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
# calculate the x values
x = (xn + shift) * jacob[k, :] + A[k, :]
# calculate function values y=fun(x,p1,p2,....,pn)
if num_parameters > 0:
if len(ix_vec):
@ -1080,46 +1088,44 @@ def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
else:
y = fun(x)
val[k] = np.sum(w * y, axis=1) * dx[k] # do the integration sum(y.*w)
val[k] = np.sum(w * y, axis=1) * dx[k] # do the integration sum(y.*w)
if trace:
x_trace.append(x.ravel())
y_trace.append(y.ravel())
hfig = plt.plot(x, y, 'r.')
#hold on
#drawnow,shg
#if trace>1:
# hold on
# drawnow,shg
# if trace>1:
# pause
plt.setp(hfig, 'color', 'b')
abserr[k] = abs(val_old[k] - val[k]) #absolute tolerance
abserr[k] = abs(val_old[k] - val[k]) # absolute tolerance
if ix > 1:
k, = np.where(abserr > np.maximum(abs(reltol * val), abstol)) # abserr > abs(abstol))%indices to integrals which did not converge
nk = len(k)# of integrals we have to compute again
if nk :
k, = np.where(abserr > np.maximum(abs(reltol * val), abstol))
# abserr > abs(abstol))%indices to integrals which
# did not converge
nk = len(k) # of integrals we have to compute again
if nk:
val_old[k] = val[k]
else:
break
gn *= 2 #double the # of basepoints and weights
gn *= 2 # double the # of basepoints and weights
else:
if nk > 1:
if (nk == np.prod(a_shape)):
tmptxt = 'All integrals did not converge--singularities likely!'
tmptxt = 'All integrals did not converge'
else:
tmptxt = '%d integrals did not converge--singularities likely!' % (nk,)
tmptxt = '%d integrals did not converge' % (nk,)
else:
tmptxt = 'Integral did not converge--singularity likely!'
warnings.warn(tmptxt)
warnings.warn(tmptxt + '--singularities likely!')
val.shape = a_shape # make sure int is the same size as the integration limits
# make sure int is the same size as the integration limits
val.shape = a_shape
abserr.shape = a_shape
if trace > 0:
@ -1127,6 +1133,7 @@ def gaussq(fun, a, b, reltol=1e-3, abstol=1e-3, alpha=0, beta=0, wfun=1,
plt.plot(np.hstack(x_trace), np.hstack(y_trace), '+')
return val, abserr
def richardson(Q, k):
# license BSD
# Richardson extrapolation with parameter estimation
@ -1136,6 +1143,7 @@ def richardson(Q, k):
R = Q[k] + (Q[k] - Q[k - 1]) / c
return R
def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
'''
Gauss-Legendre quadrature with Richardson extrapolation.
@ -1189,7 +1197,6 @@ def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
else:
reverse = False
#% Infinite limits
if np.isinf(a) | np.isinf(b):
# Check real limits
@ -1199,13 +1206,13 @@ def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
# Change of variable
if np.isfinite(a) & np.isinf(b):
# a to inf
fun1 = lambda t : fun(a + t / (1 - t)) / (1 - t) ** 2
fun1 = lambda t: fun(a + t / (1 - t)) / (1 - t) ** 2
[Q, err] = quadgr(fun1, 0, 1, abseps)
elif np.isinf(a) & np.isfinite(b):
# -inf to b
fun2 = lambda t: fun(b + t / (1 + t)) / (1 + t) ** 2
[Q, err] = quadgr(fun2, -1, 0, abseps)
else: # -inf to inf
else: # -inf to inf
fun1 = lambda t: fun(t / (1 - t)) / (1 - t) ** 2
fun2 = lambda t: fun(t / (1 + t)) / (1 + t) ** 2
[Q1, err1] = quadgr(fun1, 0, 1, abseps / 2)
@ -1219,10 +1226,12 @@ def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
return Q, err
# Gauss-Legendre quadrature (12-point)
xq = np.asarray([0.12523340851146894, 0.36783149899818018, 0.58731795428661748,
0.76990267419430469, 0.9041172563704748, 0.98156063424671924])
wq = np.asarray([0.24914704581340288, 0.23349253653835478, 0.20316742672306584,
0.16007832854334636, 0.10693932599531818, 0.047175336386511842])
xq = np.asarray(
[0.12523340851146894, 0.36783149899818018, 0.58731795428661748,
0.76990267419430469, 0.9041172563704748, 0.98156063424671924])
wq = np.asarray(
[0.24914704581340288, 0.23349253653835478, 0.20316742672306584,
0.16007832854334636, 0.10693932599531818, 0.047175336386511842])
xq = np.hstack((xq, -xq))
wq = np.hstack((wq, wq))
nq = len(xq)
@ -1233,7 +1242,7 @@ def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
dtype = np.float64
# Initiate vectors
# max_iter = 17 # Max number of iterations
# max_iter = 17 # Max number of iterations
Q0 = zeros(max_iter, dtype=dtype) # Quadrature
Q1 = zeros(max_iter, dtype=dtype) # First Richardson extrapolation
Q2 = zeros(max_iter, dtype=dtype) # Second Richardson extrapolation
@ -1251,7 +1260,8 @@ def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
hh = hh / 2
x = np.hstack([x + a, x + b]) / 2
# Quadrature
Q0[k] = hh * np.sum(wq * np.sum(np.reshape(fun(x), (-1, nq)), axis=0), axis=0)
Q0[k] = hh * \
np.sum(wq * np.sum(np.reshape(fun(x), (-1, nq)), axis=0), axis=0)
# Richardson extrapolation
if k >= 5:
@ -1260,7 +1270,6 @@ def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
elif k >= 3:
Q1[k] = richardson(Q0, k)
#% Estimate absolute error
if k >= 6:
Qv = np.hstack((Q0[k], Q1[k], Q2[k]))
@ -1276,7 +1285,7 @@ def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
j = errors.argmin()
err = errors[j]
Q = Qv[j]
if k >= 2 : #and not iscomplex:
if k >= 2: # and not iscomplex:
_val, err1 = dea3(Q0[k - 2], Q0[k - 1], Q0[k])
# Convergence
@ -1288,7 +1297,6 @@ def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
if ~ np.isfinite(Q):
warnings.warn('Integral approximation is Infinite or NaN.')
# The error estimate should not be zero
err = err + 2 * np.finfo(Q).eps
# Reverse direction
@ -1297,6 +1305,7 @@ def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
return Q, err
def qdemo(f, a, b):
'''
Compares different quadrature rules.
@ -1346,7 +1355,6 @@ def qdemo(f, a, b):
129, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
257, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
513, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
'''
# use quad8 with small tolerance to get "true" value
#true1 = quad8(f,a,b,1e-10)
@ -1381,7 +1389,7 @@ def qdemo(f, a, b):
# trapezoid approximation
q = np.trapz(y, x)
#h*( (y(1)+y(n))/2 + sum(y(2:n-1)) )
# h*( (y(1)+y(n))/2 + sum(y(2:n-1)) )
qt[k] = q
et[k] = abs(q - true_val)
# Simpson approximation
@ -1392,7 +1400,8 @@ def qdemo(f, a, b):
# Boole's rule
#q = boole(x,y)
q = (2 * h / 45) * (7 * (y[0] + y[-1]) + 12 * np.sum(y[2:n - 1:4])
+ 32 * np.sum(y[1:n - 1:2]) + 14 * np.sum(y[4:n - 3:4]))
+ 32 * np.sum(y[1:n - 1:2]) +
14 * np.sum(y[4:n - 3:4]))
qb[k] = q
eb[k] = abs(q - true_val)
@ -1409,15 +1418,14 @@ def qdemo(f, a, b):
# Gauss-Legendre quadrature
q = intg.fixed_quad(f, a, b, n=n)[0]
#[x, w]=qrule(n,1)
#x = (b-a)/2*x + (a+b)/2 % Transform base points X.
#w = (b-a)/2*w % Adjust weigths.
# x = (b-a)/2*x + (a+b)/2 % Transform base points X.
# w = (b-a)/2*w % Adjust weigths.
#q = sum(feval(f,x)*w)
qg[k] = q
eg[k] = abs(q - true_val)
#% display results
formats = ['%4.0f, ', ] + ['%10.10f, ', ]*6
formats = ['%4.0f, ', ] + ['%10.10f, ', ] * 6
formats[-1] = formats[-1].split(',')[0]
data = np.vstack((neval, qt, et, qs, es, qb, eb)).T
print(' ftn Trapezoid Simpson''s Boole''s')
@ -1435,14 +1443,12 @@ def qdemo(f, a, b):
tmp = data[k].tolist()
print(''.join(fi % t for fi, t in zip(formats, tmp)))
plt.loglog(neval, np.vstack((et, es, eb, ec, ec2, eg)).T)
plt.xlabel('number of function evaluations')
plt.ylabel('error')
plt.legend(('Trapezoid', 'Simpsons', 'Booles', 'Clenshaw', 'Chebychev', 'Gauss-L'))
#ec3'
plt.legend(
('Trapezoid', 'Simpsons', 'Booles', 'Clenshaw', 'Chebychev', 'Gauss-L'))
# ec3'
def main():
@ -1455,7 +1461,7 @@ def main():
# sum(w)
# [x2, w2] = la_roots(11, 1, 't')
#
# from scitools import numpyutils as npu #@UnresolvedImport
# from scitools import numpyutils as npu #@UnresolvedImport
# fun = npu.wrap2callable('x**2')
# p0 = fun(0)
# A = [0, 1, 1]; B = [2, 4, 3]
@ -1465,22 +1471,23 @@ def main():
# [val1, err1] = gaussq(fun, A, B)
#
#
# #Integration of x^2*exp(-x) from zero to infinity:
# Integration of x^2*exp(-x) from zero to infinity:
# fun2 = npu.wrap2callable('1')
# [val2, err2] = gaussq(fun2, 0, np.inf, wfun=3, alpha=2)
# [val2, err2] = gaussq(lambda x: x ** 2, 0, np.inf, wfun=3, alpha=0)
#
# #Integrate humps from 0 to 2 and from 1 to 4
# Integrate humps from 0 to 2 and from 1 to 4
# [val3, err3] = gaussq(humps, A, B)
#
# [x, w] = p_roots(11, 'newton', 1, 3)
# y = np.sum(x ** 2 * w)
x = np.linspace(0, np.pi / 2)
q0 = np.trapz(humps(x), x)
_q0 = np.trapz(humps(x), x)
[q, err] = romberg(humps, 0, np.pi / 2, 1e-4)
print q, err
def test_docstrings():
np.set_printoptions(precision=7)
import doctest
@ -1488,4 +1495,4 @@ def test_docstrings():
if __name__ == '__main__':
test_docstrings()
#main()
# main()

@ -1,4 +1,4 @@
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------
# Name: module1
# Purpose:
#
@ -7,15 +7,16 @@
# Created: 30.12.2008
# Copyright: (c) pab 2008
# Licence: <your licence>
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------
#!/usr/bin/env python
from __future__ import division
import numpy as np
import scipy.signal
import scipy.special as spec
import scipy.sparse as sp
import scipy.sparse.linalg #@UnusedImport
import scipy.sparse.linalg # @UnusedImport
from numpy.ma.core import ones, zeros, prod, sin
from numpy import diff, pi, inf #@UnresolvedImport
from numpy import diff, pi, inf # @UnresolvedImport
from numpy.lib.shape_base import vstack
from numpy.lib.function_base import linspace
from scipy.interpolate import PiecewisePolynomial
@ -23,11 +24,14 @@ from scipy.interpolate import PiecewisePolynomial
import polynomial as pl
__all__ = ['PPform', 'savitzky_golay', 'savitzky_golay_piecewise', 'sgolay2d','SmoothSpline',
'pchip_slopes','slopes','stineman_interp', 'Pchip','StinemanInterp', 'CubicHermiteSpline']
__all__ = [
'PPform', 'savitzky_golay', 'savitzky_golay_piecewise', 'sgolay2d',
'SmoothSpline', 'pchip_slopes', 'slopes', 'stineman_interp', 'Pchip',
'StinemanInterp', 'CubicHermiteSpline']
def savitzky_golay(y, window_size, order, deriv=0):
r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
@ -43,7 +47,8 @@ def savitzky_golay(y, window_size, order, deriv=0):
the order of the polynomial used in the filtering.
Must be less then `window_size` - 1.
deriv: int
the order of the derivative to compute (default = 0 means only smoothing)
order of the derivative to compute (default = 0 means only smoothing)
Returns
-------
ys : ndarray, shape (N)
@ -87,25 +92,28 @@ def savitzky_golay(y, window_size, order, deriv=0):
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
order_range = range(order + 1)
half_window = (window_size - 1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
b = np.mat([[k ** i for i in order_range]
for k in range(-half_window, half_window + 1)])
m = np.linalg.pinv(b).A[deriv]
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0])
lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m, y, mode='valid')
return np.convolve(m, y, mode='valid')
def savitzky_golay_piecewise(xvals, data, kernel=11, order =4):
def savitzky_golay_piecewise(xvals, data, kernel=11, order=4):
'''
One of the most popular applications of S-G filter, apart from smoothing UV-VIS
and IR spectra, is smoothing of curves obtained in electroanalytical experiments.
In cyclic voltammetry, voltage (being the abcissa) changes like a triangle wave.
And in the signal there are cusps at the turning points (at switching potentials)
which should never be smoothed. In this case, Savitzky-Golay smoothing should be
One of the most popular applications of S-G filter, apart from smoothing
UV-VIS and IR spectra, is smoothing of curves obtained in electroanalytical
experiments. In cyclic voltammetry, voltage (being the abcissa) changes
like a triangle wave. And in the signal there are cusps at the turning
points (at switching potentials) which should never be smoothed.
In this case, Savitzky-Golay smoothing should be
done piecewise, ie. separately on pieces monotonic in x
Example
@ -117,46 +125,55 @@ def savitzky_golay_piecewise(xvals, data, kernel=11, order =4):
>>> y = np.round(sin(x))
>>> sig2 = linspace(0,0.5,50)
# As an example, this figure shows the effect of an additive noise with a variance
# of 0.2 (original signal (black), noisy signal (red) and filtered signal (blue dots)).
# As an example, this figure shows the effect of an additive noise with a
# variance of 0.2 (original signal (black), noisy signal (red) and filtered
# signal (blue dots)).
>>> yn = y + np.sqrt(0.2)*np.random.randn(*x.shape)
>>> yr = savitzky_golay_piecewise(x, yn, kernel=11, order=4)
>>> h=plt.plot(x, yn, 'r', x, y, 'k', x, yr, 'b.')
'''
turnpoint=0
last=len(xvals)
if xvals[1]>xvals[0] : #x is increasing?
for i in range(1,last) : #yes
if xvals[i]<xvals[i-1] : #search where x starts to fall
turnpoint=i
turnpoint = 0
last = len(xvals)
if xvals[1] > xvals[0]: # x is increasing?
for i in range(1, last): # yes
if xvals[i] < xvals[i - 1]: # search where x starts to fall
turnpoint = i
break
else: #no, x is decreasing
for i in range(1,last) : #search where it starts to rise
if xvals[i]>xvals[i-1] :
turnpoint=i
else: # no, x is decreasing
for i in range(1, last): # search where it starts to rise
if xvals[i] > xvals[i - 1]:
turnpoint = i
break
if turnpoint==0 : #no change in direction of x
if turnpoint == 0: # no change in direction of x
return savitzky_golay(data, kernel, order)
else:
#smooth the first piece
firstpart=savitzky_golay(data[0:turnpoint],kernel,order)
#recursively smooth the rest
rest=savitzky_golay_piecewise(xvals[turnpoint:], data[turnpoint:], kernel, order)
return np.concatenate((firstpart,rest))
# smooth the first piece
firstpart = savitzky_golay(data[0:turnpoint], kernel, order)
# recursively smooth the rest
rest = savitzky_golay_piecewise(
xvals[turnpoint:], data[turnpoint:], kernel, order)
return np.concatenate((firstpart, rest))
def sgolay2d ( z, window_size, order, derivative=None):
def sgolay2d(z, window_size, order, derivative=None):
"""
Savitsky - Golay filters can also be used to smooth two dimensional data affected
by noise. The algorithm is exactly the same as for the one dimensional case, only
the math is a bit more tricky. The basic algorithm is as follow:
for each point of the two dimensional matrix extract a sub - matrix, centered at
that point and with a size equal to an odd number "window_size".
for this sub - matrix compute a least - square fit of a polynomial surface, defined as
Savitsky - Golay filters can also be used to smooth two dimensional data
affected by noise. The algorithm is exactly the same as for the one
dimensional case, only the math is a bit more tricky. The basic algorithm
is as follow: for each point of the two dimensional matrix extract a sub
- matrix, centered at that point and with a size equal to an odd number
"window_size". for this sub - matrix compute a least - square fit of a
polynomial surface, defined as
p(x, y) = a0 + a1 * x + a2 * y + a3 * x2 + a4 * y2 + a5 * x * y + ... .
Note that x and y are equal to zero at the central point.
replace the initial central point with the value computed with the fit.
Note that because the fit coefficients are linear with respect to the data spacing, they can pre - computed for efficiency. Moreover, it is important to appropriately pad the borders of the data, with a mirror image of the data itself, so that the evaluation of the fit at the borders of the data can happen smoothly.
Note that because the fit coefficients are linear with respect to the data
spacing, they can pre - computed for efficiency. Moreover, it is important
to appropriately pad the borders of the data, with a mirror image of the
data itself, so that the evaluation of the fit at the borders of the data
can happen smoothly.
Here is the code for two dimensional filtering.
Example
@ -182,7 +199,7 @@ def sgolay2d ( z, window_size, order, derivative=None):
# number of terms in the polynomial expression
n_terms = (order + 1) * (order + 2) / 2.0
if window_size % 2 == 0:
if window_size % 2 == 0:
raise ValueError('window_size must be odd')
if window_size ** 2 < n_terms:
@ -196,7 +213,7 @@ def sgolay2d ( z, window_size, order, derivative=None):
# the exponents of the k-th term. First element of tuple is for x
# second element for y.
# Ex. exps = [(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...]
exps = [ (k - n, n) for k in range(order + 1) for n in range(k + 1) ]
exps = [(k - n, n) for k in range(order + 1) for n in range(k + 1)]
# coordinates of points
ind = np.arange(-half_size, half_size + 1, dtype=np.float64)
@ -213,32 +230,44 @@ def sgolay2d ( z, window_size, order, derivative=None):
Z = np.zeros((new_shape))
# top band
band = z[0, :]
Z[:half_size, half_size:-half_size] = band - np.abs(np.flipud(z[1:half_size + 1, :]) - band)
Z[:half_size, half_size:-half_size] = band - \
np.abs(np.flipud(z[1:half_size + 1, :]) - band)
# bottom band
band = z[-1, :]
Z[-half_size:, half_size:-half_size] = band + np.abs(np.flipud(z[-half_size - 1:-1, :]) - band)
Z[-half_size:, half_size:-half_size] = band + \
np.abs(np.flipud(z[-half_size - 1:-1, :]) - band)
# left band
band = np.tile(z[:, 0].reshape(-1, 1), [1, half_size])
Z[half_size:-half_size, :half_size] = band - np.abs(np.fliplr(z[:, 1:half_size + 1]) - band)
Z[half_size:-half_size, :half_size] = band - \
np.abs(np.fliplr(z[:, 1:half_size + 1]) - band)
# right band
band = np.tile(z[:, -1].reshape(-1, 1), [1, half_size])
Z[half_size:-half_size, -half_size:] = band + np.abs(np.fliplr(z[:, -half_size - 1:-1]) - band)
Z[half_size:-half_size, -half_size:] = band + \
np.abs(np.fliplr(z[:, -half_size - 1:-1]) - band)
# central band
Z[half_size:-half_size, half_size:-half_size] = z
# top left corner
band = z[0, 0]
Z[:half_size, :half_size] = band - np.abs(np.flipud(np.fliplr(z[1:half_size + 1, 1:half_size + 1])) - band)
Z[:half_size, :half_size] = band - \
np.abs(
np.flipud(np.fliplr(z[1:half_size + 1, 1:half_size + 1])) - band)
# bottom right corner
band = z[-1, -1]
Z[-half_size:, -half_size:] = band + np.abs(np.flipud(np.fliplr(z[-half_size - 1:-1, -half_size - 1:-1])) - band)
Z[-half_size:, -half_size:] = band + \
np.abs(np.flipud(np.fliplr(z[-half_size - 1:-1, -half_size - 1:-1])) -
band)
# top right corner
band = Z[half_size, -half_size:]
Z[:half_size, -half_size:] = band - np.abs(np.flipud(Z[half_size + 1:2 * half_size + 1, -half_size:]) - band)
Z[:half_size, -half_size:] = band - \
np.abs(
np.flipud(Z[half_size + 1:2 * half_size + 1, -half_size:]) - band)
# bottom left corner
band = Z[-half_size:, half_size].reshape(-1, 1)
Z[-half_size:, :half_size] = band - np.abs(np.fliplr(Z[-half_size:, half_size + 1:2 * half_size + 1]) - band)
Z[-half_size:, :half_size] = band - \
np.abs(
np.fliplr(Z[-half_size:, half_size + 1:2 * half_size + 1]) - band)
# solve system and convolve
if derivative == None:
@ -253,12 +282,16 @@ def sgolay2d ( z, window_size, order, derivative=None):
elif derivative == 'both':
c = np.linalg.pinv(A)[1].reshape((window_size, -1))
r = np.linalg.pinv(A)[2].reshape((window_size, -1))
return scipy.signal.fftconvolve(Z, -r, mode='valid'), scipy.signal.fftconvolve(Z, -c, mode='valid')
return (scipy.signal.fftconvolve(Z, -r, mode='valid'),
scipy.signal.fftconvolve(Z, -c, mode='valid'))
class PPform(object):
"""The ppform of the piecewise polynomials is given in terms of coefficients
and breaks. The polynomial in the ith interval is
x_{i} <= x < x_{i+1}
"""The ppform of the piecewise polynomials
is given in terms of coefficients and breaks.
The polynomial in the ith interval is
x_{i} <= x < x_{i+1}
S_i = sum(coefs[m,i]*(x-breaks[i])^(k-m), m=0..k)
where k is the degree of the polynomial.
@ -274,6 +307,7 @@ class PPform(object):
>>> x = linspace(-1,3)
>>> h=plt.plot(x,self(x))
"""
def __init__(self, coeffs, breaks, fill=0.0, sort=False, a=None, b=None):
if sort:
self.breaks = np.sort(breaks)
@ -309,7 +343,8 @@ class PPform(object):
V = np.vander(dx, N=self.order)
# values = np.diag(dot(V,pp[:,indxs]))
dot = np.dot
values = np.array([dot(V[k, :], pp[:, indxs[k]]) for k in xrange(len(xx))])
values = np.array([dot(V[k, :], pp[:, indxs[k]])
for k in xrange(len(xx))])
res[mask] = values
res.shape = saveshape
@ -317,7 +352,7 @@ class PPform(object):
def linear_extrapolate(self, output=True):
'''
Return a 1D PPform which extrapolate linearly outside its basic interval
Return 1D PPform which extrapolate linearly outside its basic interval
'''
max_order = 2
@ -346,25 +381,24 @@ class PPform(object):
a_nn = coefs[:, -1]
dxN = dx[-1]
a_n = pl.polyreloc(a_nn, -dxN) # Relocate last polynomial
#set to zero all terms of order > maxOrder
a_n = pl.polyreloc(a_nn, -dxN) # Relocate last polynomial
# set to zero all terms of order > maxOrder
a_n[0:self.order - max_order] = 0
#Get the coefficients for the new first piece (a_1)
# Get the coefficients for the new first piece (a_1)
# by first setting all terms of order > maxOrder to zero and then
# relocate the polynomial.
#Set to zero all terms of order > maxOrder, i.e., not using them
# Set to zero all terms of order > maxOrder, i.e., not using them
a_11 = coefs[self.order - max_order::, 0]
dx1 = dx[0]
a_1 = pl.polyreloc(a_11, -dx1) # Relocate first polynomial
a_1 = pl.polyreloc(a_11, -dx1) # Relocate first polynomial
a_1 = np.hstack([zeros(self.order - max_order), a_1])
newcoefs = np.hstack([ a_1.reshape(-1, 1), coefs, a_n.reshape(-1, 1)])
newcoefs = np.hstack([a_1.reshape(-1, 1), coefs, a_n.reshape(-1, 1)])
if output:
return PPform(newcoefs, newbreaks, a= -inf, b=inf)
return PPform(newcoefs, newbreaks, a=-inf, b=inf)
else:
self.coeffs = newcoefs
self.breaks = newbreaks
@ -380,7 +414,6 @@ class PPform(object):
brks = self.breaks.copy()
return PPform(cof, brks, fill=self.fill)
def integrate(self):
"""
Return the indefinite integral of the piecewise polynomial
@ -388,8 +421,9 @@ class PPform(object):
cof = pl.polyint(self.coeffs)
pieces = len(self.breaks) - 1
if 1 < pieces :
# evaluate each integrated polynomial at the right endpoint of its interval
if 1 < pieces:
# evaluate each integrated polynomial at the right endpoint of its
# interval
xs = diff(self.breaks[:-1, ...], axis=0)
index = np.arange(pieces - 1)
@ -402,19 +436,19 @@ class PPform(object):
return PPform(cof, self.breaks, fill=self.fill)
# def fromspline(self, xk, cvals, order, fill=0.0):
# N = len(xk) - 1
# sivals = np.empty((order + 1, N), dtype=float)
# for m in xrange(order, -1, -1):
# fact = spec.gamma(m + 1)
# res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m)
# res /= fact
# sivals[order - m, :] = res
# return self(sivals, xk, fill=fill)
## def fromspline(cls, xk, cvals, order, fill=0.0):
## N = len(xk)-1
## sivals = np.empty((order+1,N), dtype=float)
## for m in xrange(order,-1,-1):
## fact = spec.gamma(m+1)
## res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m)
## res /= fact
## sivals[order-m,:] = res
## return cls(sivals, xk, fill=fill)
class SmoothSpline(PPform):
"""
Cubic Smoothing Spline.
@ -472,6 +506,7 @@ class SmoothSpline(PPform):
Springer Verlag
Uses EqXIV.6--9, self 239
"""
def __init__(self, xx, yy, p=None, lin_extrap=True, var=1):
coefs, brks = self._compute_coefs(xx, yy, p, var)
super(SmoothSpline, self).__init__(coefs, brks)
@ -506,7 +541,7 @@ class SmoothSpline(PPform):
dydx = np.diff(y) / dx
if (n == 2) : #% straight line
if (n == 2): # % straight line
coefs = np.vstack([dydx.ravel(), y[0, :]])
else:
@ -518,9 +553,11 @@ class SmoothSpline(PPform):
dx.shape = (n - 1, -1)
zrs = zeros(nd)
if p < 1:
ai = (y - (6 * (1 - p) * D * diff(vstack([zrs,
diff(vstack([zrs, u, zrs]), axis=0) * dx1,
zrs]), axis=0)).T).T #faster than yi-6*(1-p)*Q*u
# faster than yi-6*(1-p)*Q*u
ai = (y - (6 * (1 - p) * D *
diff(vstack([zrs,
diff(vstack([zrs, u, zrs]), axis=0) * dx1,
zrs]), axis=0)).T).T
else:
ai = y.reshape(n, -1)
@ -532,7 +569,7 @@ class SmoothSpline(PPform):
# dfi = diff(ai)./dx-(ci+di.*dx).*dx = bi;
ci = np.vstack([zrs, 3 * p * u])
di = (diff(vstack([ci, zrs]), axis=0) * dx1 / 3);
di = (diff(vstack([ci, zrs]), axis=0) * dx1 / 3)
bi = (diff(ai, axis=0) * dx1 - (ci + di * dx) * dx)
ai = ai[:n - 1, ...]
if nd > 1:
@ -545,7 +582,8 @@ class SmoothSpline(PPform):
else:
coefs = vstack([ci.ravel(), bi.ravel(), ai.ravel()])
else:
coefs = vstack([di.ravel(), ci.ravel(), bi.ravel(), ai.ravel()])
coefs = vstack(
[di.ravel(), ci.ravel(), bi.ravel(), ai.ravel()])
return coefs, x
@ -555,11 +593,15 @@ class SmoothSpline(PPform):
R = sp.spdiags(data, [-1, 0, 1], n - 2, n - 2)
if p is None or p < 1:
Q = sp.spdiags([dx1[:n - 2], -(dx1[:n - 2] + dx1[1:n - 1]), dx1[1:n - 1]], [0, -1, -2], n, n - 2)
Q = sp.spdiags(
[dx1[:n - 2], -(dx1[:n - 2] + dx1[1:n - 1]), dx1[1:n - 1]],
[0, -1, -2], n, n - 2)
QDQ = (Q.T * D * Q)
if p is None or p < 0:
# Estimate p
p = 1. / (1. + QDQ.diagonal().sum() / (100. * R.diagonal().sum()** 2));
p = 1. / \
(1. + QDQ.diagonal().sum() /
(100. * R.diagonal().sum() ** 2))
if p == 0:
QQ = 6 * QDQ
@ -574,8 +616,10 @@ class SmoothSpline(PPform):
u = 2 * sp.linalg.spsolve((QQ + QQ.T), ddydx)
return u.reshape(n - 2, -1), p
def _edge_case(m0, d1):
return np.where((d1==0) | (m0==0), 0.0, 1.0/(1.0/m0+1.0/d1))
return np.where((d1 == 0) | (m0 == 0), 0.0, 1.0 / (1.0 / m0 + 1.0 / d1))
def pchip_slopes(x, y):
# Determine the derivatives at the points y_k, d_k, by using
@ -591,24 +635,25 @@ def pchip_slopes(x, y):
hk = x[1:] - x[:-1]
mk = (y[1:] - y[:-1]) / hk
smk = np.sign(mk)
condition = ((smk[1:] != smk[:-1]) | (mk[1:]==0) | (mk[:-1]==0))
condition = ((smk[1:] != smk[:-1]) | (mk[1:] == 0) | (mk[:-1] == 0))
w1 = 2*hk[1:] + hk[:-1]
w2 = hk[1:] + 2*hk[:-1]
whmean = 1.0/(w1+w2)*(w1/mk[1:] + w2/mk[:-1])
w1 = 2 * hk[1:] + hk[:-1]
w2 = hk[1:] + 2 * hk[:-1]
whmean = 1.0 / (w1 + w2) * (w1 / mk[1:] + w2 / mk[:-1])
dk = np.zeros_like(y)
dk[1:-1][condition] = 0.0
dk[1:-1][~condition] = 1.0/whmean[~condition]
dk[1:-1][~condition] = 1.0 / whmean[~condition]
# For end-points choose d_0 so that 1/d_0 = 1/m_0 + 1/d_1 unless
# one of d_1 or m_0 is 0, then choose d_0 = 0
dk[0] = _edge_case(mk[0],dk[1])
dk[-1] = _edge_case(mk[-1],dk[-2])
dk[0] = _edge_case(mk[0], dk[1])
dk[-1] = _edge_case(mk[-1], dk[-2])
return dk
def slopes(x,y, method='parabola', tension=0, monotone=False):
def slopes(x, y, method='parabola', tension=0, monotone=False):
'''
Return estimated slopes y'(x)
@ -624,7 +669,7 @@ def slopes(x,y, method='parabola', tension=0, monotone=False):
'Cardinal' yp = (1-tension) * (y[k+1]-y[k-1])/(x[k+1]-x[k-1])
'parabola'
'secant' average secants
yp = 0.5*((y[k+1]-y[k])/(x[k+1]-x[k]) + (y[k]-y[k-1])/(x[k]-x[k-1]))
yp = 0.5*((y[k+1]-y[k])/(x[k+1]-x[k]) + (y[k]-y[k-1])/(x[k]-x[k-1]))
tension : real scalar between 0 and 1.
tension parameter used in Cardinal method
monotone : bool
@ -645,27 +690,27 @@ def slopes(x,y, method='parabola', tension=0, monotone=False):
y = np.asarray(y, np.float_)
yp = np.zeros(y.shape, np.float_)
dx = x[1:] - x[:-1]
# Compute the slopes of the secant lines between successive points
dydx = (y[1:] - y[:-1]) / dx
method = method.lower()
if method.startswith('p'): #parabola'):
yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1]) / (dx[1:] + dx[:-1])
if method.startswith('p'): # parabola'):
yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1]) / \
(dx[1:] + dx[:-1])
yp[0] = 2.0 * dydx[0] - yp[1]
yp[-1] = 2.0 * dydx[-1] - yp[-2]
else:
# At the endpoints - use one-sided differences
yp[0] = dydx[0]
yp[-1] = dydx[-1]
if method.startswith('s'): #secant'):
if method.startswith('s'): # secant'):
# In the middle - use the average of the secants
yp[1:-1] = (dydx[:-1] + dydx[1:]) / 2.0
else: # Cardinal or Catmull-Rom method
else: # Cardinal or Catmull-Rom method
yp[1:-1] = (y[2:] - y[:-2]) / (x[2:] - x[:-2])
if method.startswith('car'): #cardinal'):
yp = (1-tension) * yp
if method.startswith('car'): # cardinal'):
yp = (1 - tension) * yp
if monotone:
# Special case: intervals where y[k] == y[k+1]
@ -673,26 +718,28 @@ def slopes(x,y, method='parabola', tension=0, monotone=False):
# these points will be flat which preserves monotonicity
ii, = (dydx == 0.0).nonzero()
yp[ii] = 0.0
yp[ii+1] = 0.0
yp[ii + 1] = 0.0
alpha = yp[:-1]/dydx
beta = yp[1:]/dydx
dist = alpha**2 + beta**2
tau = 3.0 / np.sqrt(dist)
alpha = yp[:-1] / dydx
beta = yp[1:] / dydx
dist = alpha ** 2 + beta ** 2
tau = 3.0 / np.sqrt(dist)
# To prevent overshoot or undershoot, restrict the position vector
# (alpha, beta) to a circle of radius 3. If (alpha**2 + beta**2)>9,
# then set m[k] = tau[k]alpha[k]delta[k] and m[k+1] = tau[k]beta[b]delta[k]
# then set m[k] = tau[k]alpha[k]delta[k] and
# m[k+1] = tau[k]beta[b]delta[k]
# where tau = 3/sqrt(alpha**2 + beta**2).
# Find the indices that need adjustment
indices_to_fix, = (dist > 9.0).nonzero()
for ii in indices_to_fix:
yp[ii] = tau[ii] * alpha[ii] * dydx[ii]
yp[ii+1] = tau[ii] * beta[ii] * dydx[ii]
yp[ii] = tau[ii] * alpha[ii] * dydx[ii]
yp[ii + 1] = tau[ii] * beta[ii] * dydx[ii]
return yp
def stineman_interp(xi, x, y, yp=None):
"""
Given data vectors *x* and *y*, the slope vector *yp* and a new
@ -752,14 +799,15 @@ def stineman_interp(xi, x, y, yp=None):
# calculate linear slopes
dx = x[1:] - x[:-1]
dy = y[1:] - y[:-1]
s = dy / dx #note length of s is N-1 so last element is #N-2
s = dy / dx # note length of s is N-1 so last element is #N-2
# find the segment each xi is in
# this line actually is the key to the efficiency of this implementation
idx = np.searchsorted(x[1:-1], xi)
# now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1]
# except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1]
# except at the boundaries, where it may be that xi[j] < x[0] or xi[j] >
# x[-1]
# the y-values that would come out from a linear interpolation:
sidx = s.take(idx)
@ -769,62 +817,82 @@ def stineman_interp(xi, x, y, yp=None):
yo = yidx + sidx * (xi - xidx)
# the difference that comes when using the slopes given in yp
dy1 = (yp.take(idx) - sidx) * (xi - xidx) # using the yp slope of the left point
dy2 = (yp.take(idx + 1) - sidx) * (xi - xidxp1) # using the yp slope of the right point
# using the yp slope of the left point
dy1 = (yp.take(idx) - sidx) * (xi - xidx)
# using the yp slope of the right point
dy2 = (yp.take(idx + 1) - sidx) * (xi - xidxp1)
dy1dy2 = dy1 * dy2
# The following is optimized for Python. The solution actually
# does more calculations than necessary but exploiting the power
# of numpy, this is far more efficient than coding a loop by hand
# in Python
dy1mdy2 = np.where(dy1dy2,dy1-dy2,np.inf)
dy1pdy2 = np.where(dy1dy2,dy1+dy2,np.inf)
yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32) + 1,
((2 * xi - xidx - xidxp1) / ((dy1mdy2) * (xidxp1 - xidx)),
0.0,
1 / (dy1pdy2)))
dy1mdy2 = np.where(dy1dy2, dy1 - dy2, np.inf)
dy1pdy2 = np.where(dy1dy2, dy1 + dy2, np.inf)
yi = yo + dy1dy2 * np.choose(
np.array(np.sign(dy1dy2), np.int32) + 1,
((2 * xi - xidx - xidxp1) / ((dy1mdy2) * (xidxp1 - xidx)), 0.0,
1 / (dy1pdy2)))
return yi
class StinemanInterp(object):
'''
Returns the values of an interpolating function that runs through a set of points according to the algorithm of Stineman (1980).
Returns an interpolating function
that runs through a set of points according to the algorithm of
Stineman (1980).
Parameters
---------
----------
x,y : array-like
coordinates of points defining the interpolating function.
yp : array-like
slopes of the interpolating function at x. Optional: only given if they are known, else the argument is not used.
slopes of the interpolating function at x.
Optional: only given if they are known, else the argument is not used.
method : string
method for computing the slope at the given points if the slope is not known. With method=
"parabola" calculates the slopes from a parabola through every three points.
method for computing the slope at the given points if the slope is not
known. With method= "parabola" calculates the slopes from a parabola
through every three points.
Notes
-----
The interpolation method is described in an article by Russell W. Stineman (1980)
According to Stineman, the interpolation procedure has "the following properties:
If values of the ordinates of the specified points change monotonically, and the slopes of the line segments joining
the points change monotonically, then the interpolating curve and its slope will change monotonically.
If the slopes of the line segments joining the specified points change monotonically, then the slopes of the interpolating
curve will change monotonically. Suppose that the conditions in (1) or (2) are satisfied by a set of points, but a small
change in the ordinate or slope at one of the points will result conditions (1) or (2) being not longer satisfied. Then
making this small change in the ordinate or slope at a point will cause no more than a small change in the interpolating
curve." The method is based on rational interpolation with specially chosen rational functions to satisfy the above three
conditions.
Slopes computed at the given points with the methods provided by the `StinemanInterp' function satisfy Stineman's requirements.
The original method suggested by Stineman (method="scaledstineman", the default, and "stineman") result in lower slopes near
abrupt steps or spikes in the point sequence, and therefore a smaller tendency for overshooting. The method based on a second
degree polynomial (method="parabola") provides better approximation to smooth functions, but it results in in higher slopes
near abrupt steps or spikes and can lead to some overshooting where Stineman's method does not. Both methods lead to much
less tendency for `spurious' oscillations than traditional interplation methods based on polynomials, such as splines
The interpolation method is described by Russell W. Stineman (1980)
According to Stineman, the interpolation procedure has "the following
properties:
If values of the ordinates of the specified points change monotonically,
and the slopes of the line segments joining the points change
monotonically, then the interpolating curve and its slope will change
monotonically. If the slopes of the line segments joining the specified
points change monotonically, then the slopes of the interpolating curve
will change monotonically. Suppose that the conditions in (1) or (2) are
satisfied by a set of points, but a small change in the ordinate or slope
at one of the points will result conditions(1) or (2) being not longer
satisfied. Then making this small change in the ordinate or slope at a
point will cause no more than a small change in the interpolating
curve." The method is based on rational interpolation with specially chosen
rational functions to satisfy the above three conditions.
Slopes computed at the given points with the methods provided by the
`StinemanInterp' function satisfy Stineman's requirements.
The original method suggested by Stineman(method="scaledstineman", the
default, and "stineman") result in lower slopes near abrupt steps or spikes
in the point sequence, and therefore a smaller tendency for overshooting.
The method based on a second degree polynomial(method="parabola") provides
better approximation to smooth functions, but it results in in higher
slopes near abrupt steps or spikes and can lead to some overshooting where
Stineman's method does not. Both methods lead to much less tendency for
`spurious' oscillations than traditional interplation methods based on
polynomials, such as splines
(see the examples section).
Stineman states that "The complete assurance that the procedure will never generate `wild' points makes it attractive as a
general purpose procedure".
Stineman states that "The complete assurance that the procedure will never
generate `wild' points makes it attractive as a general purpose procedure".
This interpolation method has been implemented in Matlab and R in addition to Python.
This interpolation method has been implemented in Matlab and R in addition
to Python.
Examples
--------
@ -840,17 +908,20 @@ class StinemanInterp(object):
>>> h=plt.subplot(211)
>>> h=plt.plot(x,y,'o',xi,yi,'r', xi,yi1, 'g', xi,yi1, 'b')
>>> h=plt.subplot(212)
>>> h=plt.plot(xi,np.abs(sin(xi)-yi), 'r', xi, np.abs(sin(xi)-yi1), 'g', xi, np.abs(sin(xi)-yi2), 'b')
>>> h=plt.plot(xi,np.abs(sin(xi)-yi), 'r',
... xi, np.abs(sin(xi)-yi1), 'g',
... xi, np.abs(sin(xi)-yi2), 'b')
References
----------
Stineman, R. W. A Consistently Well Behaved Method of Interpolation. Creative Computing (1980), volume 6, number 7, p. 54-57.
Stineman, R. W. A Consistently Well Behaved Method of Interpolation.
Creative Computing (1980), volume 6, number 7, p. 54-57.
See Also
--------
slopes, Pchip
'''
def __init__(self, x,y,yp=None,method='parabola', monotone=False):
def __init__(self, x, y, yp=None, method='parabola', monotone=False):
if yp is None:
yp = slopes(x, y, method, monotone)
self.x = np.asarray(x, np.float_)
@ -865,14 +936,16 @@ class StinemanInterp(object):
# calculate linear slopes
dx = x[1:] - x[:-1]
dy = y[1:] - y[:-1]
s = dy / dx #note length of s is N-1 so last element is #N-2
s = dy / dx # note length of s is N-1 so last element is #N-2
# find the segment each xi is in
# this line actually is the key to the efficiency of this implementation
# this line actually is the key to the efficiency of this
# implementation
idx = np.searchsorted(x[1:-1], xi)
# now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1]
# except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1]
# except at the boundaries, where it may be that xi[j] < x[0] or xi[j]
# > x[-1]
# the y-values that would come out from a linear interpolation:
sidx = s.take(idx)
@ -882,39 +955,48 @@ class StinemanInterp(object):
yo = yidx + sidx * (xi - xidx)
# the difference that comes when using the slopes given in yp
dy1 = (yp.take(idx) - sidx) * (xi - xidx) # using the yp slope of the left point
dy2 = (yp.take(idx + 1) - sidx) * (xi - xidxp1) # using the yp slope of the right point
# using the yp slope of the left point
dy1 = (yp.take(idx) - sidx) * (xi - xidx)
# using the yp slope of the right point
dy2 = (yp.take(idx + 1) - sidx) * (xi - xidxp1)
dy1dy2 = dy1 * dy2
# The following is optimized for Python. The solution actually
# does more calculations than necessary but exploiting the power
# of numpy, this is far more efficient than coding a loop by hand
# in Python
dy1mdy2 = np.where(dy1dy2,dy1-dy2,np.inf)
dy1pdy2 = np.where(dy1dy2,dy1+dy2,np.inf)
yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32) + 1,
((2 * xi - xidx - xidxp1) / ((dy1mdy2) * (xidxp1 - xidx)),
0.0,
1 / (dy1pdy2)))
dy1mdy2 = np.where(dy1dy2, dy1 - dy2, np.inf)
dy1pdy2 = np.where(dy1dy2, dy1 + dy2, np.inf)
yi = yo + dy1dy2 * np.choose(
np.array(np.sign(dy1dy2), np.int32) + 1,
((2 * xi - xidx - xidxp1) / ((dy1mdy2) * (xidxp1 - xidx)), 0.0,
1 / (dy1pdy2)))
return yi
class StinemanInterp2(PiecewisePolynomial):
def __init__(self, x, y, yp=None, method='parabola', monotone=False):
if yp is None:
yp = slopes(x, y, method, monotone=monotone)
super(StinemanInterp2,self).__init__(x, zip(y,yp))
super(StinemanInterp2, self).__init__(x, zip(y, yp))
class CubicHermiteSpline(PiecewisePolynomial):
'''
Piecewise Cubic Hermite Interpolation using Catmull-Rom
method for computing the slopes.
'''
def __init__(self, x, y, yp=None, method='Catmull-Rom'):
if yp is None:
yp = slopes(x, y, method, monotone=False)
super(CubicHermiteSpline, self).__init__(x, zip(y,yp), orders=3)
super(CubicHermiteSpline, self).__init__(x, zip(y, yp), orders=3)
class Pchip(PiecewisePolynomial):
"""PCHIP 1-d monotonic cubic interpolation
Description
@ -933,10 +1015,12 @@ class Pchip(PiecewisePolynomial):
A 1-D array of real values. y's length along the interpolation
axis must be equal to the length of x.
yp : array
slopes of the interpolating function at x. Optional: only given if they are known, else the argument is not used.
slopes of the interpolating function at x.
Optional: only given if they are known, else the argument is not used.
method : string
method for computing the slope at the given points if the slope is not known. With method=
"parabola" calculates the slopes from a parabola through every three points.
method for computing the slope at the given points if the slope is not
known. With method="parabola" calculates the slopes from a parabola
through every three points.
Assumes x is sorted in monotonic order (e.g. x[1] > x[0])
@ -980,14 +1064,16 @@ class Pchip(PiecewisePolynomial):
>>> plt.show()
"""
def __init__(self, x, y, yp=None, method='secant'):
if yp is None:
yp = slopes(x, y, method=method, monotone=True)
super(Pchip, self).__init__(x, zip(y,yp), orders=3)
super(Pchip, self).__init__(x, zip(y, yp), orders=3)
def test_smoothing_spline():
x = linspace(0, 2 * pi + pi / 4, 20)
y = sin(x) #+ np.random.randn(x.size)
y = sin(x) # + np.random.randn(x.size)
pp = SmoothSpline(x, y, p=1)
x1 = linspace(-1, 2 * pi + pi / 4 + 1, 20)
y1 = pp(x1)
@ -1003,17 +1089,18 @@ def test_smoothing_spline():
pass
#tck = interpolate.splrep(x, y, s=len(x))
def compare_methods():
############################################################
#
# Sine wave test
############################################################
#
fun = np.sin
# Create a example vector containing a sine wave.
x = np.arange(30.0)/10.
x = np.arange(30.0) / 10.
y = fun(x)
# Interpolate the data above to the grid defined by "xvec"
xvec = np.arange(250.)/100.
xvec = np.arange(250.) / 100.
# Initialize the interpolator slopes
# Create the pchip slopes
@ -1031,17 +1118,18 @@ def compare_methods():
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x,y, 'ro', xvec, fun(xvec),'r')
plt.plot(x, y, 'ro', xvec, fun(xvec), 'r')
plt.title("pchip() Sin test code")
# Plot the interpolated points
plt.plot(xvec, yvec, xvec, yvec1, xvec, yvec2,'g.',xvec, yvec3)
plt.legend(['true','true','parbola_monoton','parabola','catmul','pchip'], frameon=False, loc=0)
plt.plot(xvec, yvec, xvec, yvec1, xvec, yvec2, 'g.', xvec, yvec3)
plt.legend(
['true', 'true', 'parbola_monoton', 'parabola', 'catmul', 'pchip'],
frameon=False, loc=0)
plt.ioff()
plt.show()
def demo_monoticity():
# Step function test...
import matplotlib.pyplot as plt
@ -1049,13 +1137,13 @@ def demo_monoticity():
plt.title("pchip() step function test")
# Create a step function (will demonstrate monotonicity)
x = np.arange(7.0) - 3.0
y = np.array([-1.0, -1,-1,0,1,1,1])
y = np.array([-1.0, -1, -1, 0, 1, 1, 1])
# Interpolate using monotonic piecewise Hermite cubic spline
xvec = np.arange(599.)/100. - 3.0
xvec = np.arange(599.) / 100. - 3.0
# Create the pchip slopes
m = slopes(x,y, monotone=True)
m = slopes(x, y, monotone=True)
# m1 = slopes(x, y, monotone=False)
# m2 = slopes(x,y,method='catmul',monotone=False)
m3 = pchip_slopes(x, y)
@ -1069,9 +1157,9 @@ def demo_monoticity():
# Non-montonic cubic Hermite spline interpolator using
# Catmul-Rom method for computing slopes...
yvec3 = CubicHermiteSpline(x,y)(xvec)
yvec3 = CubicHermiteSpline(x, y)(xvec)
yvec4 = StinemanInterp(x, y)(xvec)
yvec5 = Pchip(x, y, m3)(xvec) #@UnusedVariable
yvec5 = Pchip(x, y, m3)(xvec) # @UnusedVariable
# Plot the results
plt.plot(x, y, 'ro', label='Data')
@ -1088,49 +1176,54 @@ def demo_monoticity():
plt.ioff()
plt.show()
def test_doctstrings():
def test_func():
from scipy import interpolate
import matplotlib.pyplot as plt
import matplotlib
matplotlib.interactive(True)
matplotlib.interactive(False)
coef = np.array([[1, 1], [0, 1]]) # linear from 0 to 2
#coef = np.array([[1,1],[1,1],[0,2]]) # linear from 0 to 2
coef = np.array([[1, 1], [0, 1]]) # linear from 0 to 2
# coef = np.array([[1,1],[1,1],[0,2]]) # linear from 0 to 2
breaks = [0, 1, 2]
pp = PPform(coef, breaks, a= -100, b=100)
pp = PPform(coef, breaks, a=-100, b=100)
x = linspace(-1, 3, 20)
y = pp(x) #@UnusedVariable
y = pp(x) # @UnusedVariable
x = linspace(0, 2 * pi + pi / 4, 20)
y = x + np.random.randn(x.size)
tck = interpolate.splrep(x, y, s=len(x))
y = sin(x) + np.random.randn(x.size)
tck = interpolate.splrep(x, y, s=len(x)) # @UndefinedVariable
xnew = linspace(0, 2 * pi, 100)
ynew = interpolate.splev(xnew, tck, der=0)
tck0 = interpolate.splmake(xnew, ynew, order=3, kind='smoothest', conds=None)
pp = interpolate.ppform.fromspline(*tck0)
ynew = interpolate.splev(xnew, tck, der=0) # @UndefinedVariable
tck0 = interpolate.splmake( # @UndefinedVariable
xnew, ynew, order=3, kind='smoothest', conds=None)
pp = interpolate.ppform.fromspline(*tck0) # @UndefinedVariable
plt.plot(x, y, "x", xnew, ynew, xnew, sin(xnew), x, y, "b")
plt.plot(x, y, "x", xnew, ynew, xnew, sin(xnew), x, y, "b", x, pp(x), 'g')
plt.legend(['Linear', 'Cubic Spline', 'True'])
plt.title('Cubic-spline interpolation')
plt.show()
t = np.arange(0, 1.1, .1)
x = np.sin(2 * np.pi * t)
y = np.cos(2 * np.pi * t)
tck1, u = interpolate.splprep([t, y], s=0) #@UnusedVariable
tck2 = interpolate.splrep(t, y, s=len(t), task=0)
#interpolate.spl
tck = interpolate.splmake(t, y, order=3, kind='smoothest', conds=None)
self = interpolate.ppform.fromspline(*tck2)
_tck1, _u = interpolate.splprep([t, y], s=0) # @UndefinedVariable
tck2 = interpolate.splrep(t, y, s=len(t), task=0) # @UndefinedVariable
# interpolate.spl
tck = interpolate.splmake(t, y, order=3, kind='smoothest', conds=None) # @UndefinedVariable
self = interpolate.ppform.fromspline(*tck2) # @UndefinedVariable
plt.plot(t, self(t))
plt.show()
pass
def test_pp():
coef = np.array([[1, 1], [0, 0]]) # linear from 0 to 2 @UnusedVariable
coef = np.array([[1, 1], [0, 0]]) # linear from 0 to 2 @UnusedVariable
coef = np.array([[1, 1], [1, 1], [0, 2]]) # quadratic from 0 to 1 and 1 to 2.
# quadratic from 0 to 1 and 1 to 2.
coef = np.array([[1, 1], [1, 1], [0, 2]])
dc = pl.polyder(coef, 1)
c2 = pl.polyint(dc, 1) #@UnusedVariable
c2 = pl.polyint(dc, 1) # @UnusedVariable
breaks = [0, 1, 2]
pp = PPform(coef, breaks)
pp(0.5)
@ -1149,8 +1242,8 @@ def test_docstrings():
if __name__ == '__main__':
# test_docstrings()
#test_doctstrings()
#test_smoothing_spline()
#compare_methods()
demo_monoticity()
test_func()
# test_doctstrings()
# test_smoothing_spline()
# compare_methods()
#demo_monoticity()

File diff suppressed because it is too large Load Diff

@ -6,10 +6,11 @@ Created on Tue Apr 17 13:59:12 2012
"""
import numpy as np
def magic(n):
ix = np.arange(n)+1
J, I = np.meshgrid(ix,ix)
A = np.mod(I+J-(n+3)/2,n)
B = np.mod(I+2*J-2,n)
M = n*A + B + 1
ix = np.arange(n) + 1
J, I = np.meshgrid(ix, ix)
A = np.mod(I + J - (n + 3) / 2, n)
B = np.mod(I + 2 * J - 2, n)
M = n * A + B + 1
return M

@ -1,4 +1,6 @@
import numpy as np
def meshgrid(*xi, **kwargs):
"""
Return coordinate matrices from one or more coordinate vectors.
@ -33,10 +35,10 @@ def meshgrid(*xi, **kwargs):
Notes
-----
This function supports both indexing conventions through the indexing keyword
argument. Giving the string 'ij' returns a meshgrid with matrix indexing,
while 'xy' returns a meshgrid with Cartesian indexing. The difference is
illustrated by the following code snippet:
This function supports both indexing conventions through the indexing
keyword argument. Giving the string 'ij' returns a meshgrid with matrix
indexing, while 'xy' returns a meshgrid with Cartesian indexing. The
difference is illustrated by the following code snippet:
xv, yv = meshgrid(x, y, sparse=False, indexing='ij')
for i in range(nx):
@ -88,21 +90,23 @@ def meshgrid(*xi, **kwargs):
args = np.atleast_1d(*xi)
ndim = len(args)
if not isinstance(args, list) or ndim<2:
raise TypeError('meshgrid() takes 2 or more arguments (%d given)' % int(ndim>0))
if not isinstance(args, list) or ndim < 2:
raise TypeError(
'meshgrid() takes 2 or more arguments (%d given)' % int(ndim > 0))
sparse = kwargs.get('sparse', False)
indexing = kwargs.get('indexing', 'xy')
s0 = (1,)*ndim
output = [x.reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(args)]
s0 = (1,) * ndim
output = [x.reshape(s0[:i] + (-1,) + s0[i + 1::])
for i, x in enumerate(args)]
shape = [x.size for x in output]
if indexing == 'xy':
# switch first and second axis
output[0].shape = (1, -1) + (1,)*(ndim - 2)
output[1].shape = (-1, 1) + (1,)*(ndim - 2)
output[0].shape = (1, -1) + (1,) * (ndim - 2)
output[1].shape = (-1, 1) + (1,) * (ndim - 2)
shape[0], shape[1] = shape[1], shape[0]
if sparse:
@ -130,4 +134,3 @@ def ndgrid(*args, **kwargs):
if __name__ == '__main__':
import doctest
doctest.testmod()

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save