|
|
@ -3077,7 +3077,7 @@ def smoothn(data, s=None, weight=None, robust=False, z0=None, tolz=1e-3, maxiter
|
|
|
|
errp = 0.1;
|
|
|
|
errp = 0.1;
|
|
|
|
|
|
|
|
|
|
|
|
# Relaxation factor RF: to speedup convergence
|
|
|
|
# Relaxation factor RF: to speedup convergence
|
|
|
|
RF = 1 + 0.75 if weight else 1.0
|
|
|
|
RF = 1 + 0.75 if weight is None else 1.0
|
|
|
|
|
|
|
|
|
|
|
|
norm = linalg.norm
|
|
|
|
norm = linalg.norm
|
|
|
|
# Main iterative process
|
|
|
|
# Main iterative process
|
|
|
@ -3476,7 +3476,7 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj', plotlog=False):
|
|
|
|
from sg_filter import SavitzkyGolay
|
|
|
|
from sg_filter import SavitzkyGolay
|
|
|
|
dist = st.norm
|
|
|
|
dist = st.norm
|
|
|
|
scale1 = 0.3
|
|
|
|
scale1 = 0.3
|
|
|
|
loc1= 0
|
|
|
|
loc1= 1
|
|
|
|
norm1 = dist.pdf(-loc1, loc=-loc1, scale=scale1) + dist.pdf(-loc1, loc=loc1, scale=scale1)
|
|
|
|
norm1 = dist.pdf(-loc1, loc=-loc1, scale=scale1) + dist.pdf(-loc1, loc=loc1, scale=scale1)
|
|
|
|
fun1 = lambda x : (dist.pdf(x, loc=-loc1, scale=scale1) + dist.pdf(x, loc=loc1, scale=scale1))/norm1
|
|
|
|
fun1 = lambda x : (dist.pdf(x, loc=-loc1, scale=scale1) + dist.pdf(x, loc=loc1, scale=scale1))/norm1
|
|
|
|
|
|
|
|
|
|
|
@ -3489,16 +3489,23 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj', plotlog=False):
|
|
|
|
alpha=0.05
|
|
|
|
alpha=0.05
|
|
|
|
z0 = -_invnorm(alpha/2)
|
|
|
|
z0 = -_invnorm(alpha/2)
|
|
|
|
|
|
|
|
|
|
|
|
kernel = Kernel('gauss',fun=fun)
|
|
|
|
|
|
|
|
hopt = kernel.get_smoothing(x)
|
|
|
|
|
|
|
|
if hs is None:
|
|
|
|
|
|
|
|
hs = hopt
|
|
|
|
|
|
|
|
if symmetric:
|
|
|
|
if symmetric:
|
|
|
|
xi = np.hstack((x.ravel(),-x.ravel()))
|
|
|
|
xi = np.hstack((x.ravel(),-x.ravel()))
|
|
|
|
yi = np.hstack((y, y))
|
|
|
|
yi = np.hstack((y, y))
|
|
|
|
i = np.argsort(xi)
|
|
|
|
i = np.argsort(xi)
|
|
|
|
x = xi[i]
|
|
|
|
x = xi[i]
|
|
|
|
y = yi[i]
|
|
|
|
y = yi[i]
|
|
|
|
|
|
|
|
hisj = Kernel('gauss', fun='hisj').get_smoothing(x)
|
|
|
|
|
|
|
|
hste = Kernel('gauss', fun='hste').get_smoothing(x)
|
|
|
|
|
|
|
|
#kernel = Kernel('gauss',fun=fun)
|
|
|
|
|
|
|
|
hopt = (hste+hisj)/2 #kernel.get_smoothing(x)
|
|
|
|
|
|
|
|
if hs is None:
|
|
|
|
|
|
|
|
hs = hopt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
forward = _logit
|
|
|
|
|
|
|
|
reverse = _logitinv
|
|
|
|
|
|
|
|
#forward = np.log
|
|
|
|
|
|
|
|
#reverse = np.exp
|
|
|
|
|
|
|
|
|
|
|
|
xmin, xmax = x.min(), x.max()
|
|
|
|
xmin, xmax = x.min(), x.max()
|
|
|
|
ni = 2*int((xmax-xmin)/hopt)+1
|
|
|
|
ni = 2*int((xmax-xmin)/hopt)+1
|
|
|
@ -3508,9 +3515,12 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj', plotlog=False):
|
|
|
|
xi = np.linspace(xmin-hopt,xmax+hopt, ni)
|
|
|
|
xi = np.linspace(xmin-hopt,xmax+hopt, ni)
|
|
|
|
xiii = np.linspace(xmin-hopt,xmax+hopt, 4*ni+1)
|
|
|
|
xiii = np.linspace(xmin-hopt,xmax+hopt, 4*ni+1)
|
|
|
|
|
|
|
|
|
|
|
|
kreg = KRegression(x, y, hs=hs*0.5)
|
|
|
|
from wafo.interpolate import stineman_interp
|
|
|
|
|
|
|
|
fact = stineman_interp([x.size], [0, 2000], [0.25, 1.0], yp=[0.75/2000,0.75/2000]).clip(min=0.25,max=1.3)
|
|
|
|
|
|
|
|
print("fact=%g" % (fact))
|
|
|
|
|
|
|
|
kreg = KRegression(x, y, hs=hs*fact, p=0)
|
|
|
|
fi = kreg(xi)
|
|
|
|
fi = kreg(xi)
|
|
|
|
f = kreg(xiii,output='plotobj', title='Kernel regression n=%d, %s=%g' % (n,fun,hs), plotflag=1)
|
|
|
|
f = kreg(xiii,output='plotobj', title='Kernel regression n=%d, hste=%g, hisj=%g' % (n,hste,hisj), plotflag=1)
|
|
|
|
|
|
|
|
|
|
|
|
c = gridcount(x, xi)
|
|
|
|
c = gridcount(x, xi)
|
|
|
|
c0 = gridcount(x[y==True],xi)
|
|
|
|
c0 = gridcount(x[y==True],xi)
|
|
|
@ -3518,45 +3528,38 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj', plotlog=False):
|
|
|
|
yi = np.where(c==0, 0, c0/c)
|
|
|
|
yi = np.where(c==0, 0, c0/c)
|
|
|
|
#yi[yi==0] = 1.0/(c[c!=0].min()+4)#
|
|
|
|
#yi[yi==0] = 1.0/(c[c!=0].min()+4)#
|
|
|
|
#yi[yi==1] = 1-1.0/(c[c!=0].min()+4) #
|
|
|
|
#yi[yi==1] = 1-1.0/(c[c!=0].min()+4) #
|
|
|
|
yi[yi==0] = fi[yi==0] #yi[yi>0].min()/sqrt(n)
|
|
|
|
#yi[yi==0] = fi[yi==0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#yi[yi==0] = np.exp(stineman_interp(xi[yi==0], xi[yi>0],np.log(yi[yi>0])))
|
|
|
|
|
|
|
|
#yi[yi==0] = fun1(xi[yi==0])
|
|
|
|
|
|
|
|
yi[yi==0] = yi[yi>0].min()/sqrt(n)
|
|
|
|
yi[yi==1] =1-(1-yi[yi<1].max())/sqrt(n)
|
|
|
|
yi[yi==1] =1-(1-yi[yi<1].max())/sqrt(n)
|
|
|
|
|
|
|
|
|
|
|
|
logity =_logit(yi)
|
|
|
|
logity =forward(yi)
|
|
|
|
# plt.plot(xi, np.log(yi/(1-yi)), xi,logity,'.')
|
|
|
|
# plt.plot(xi, np.log(yi/(1-yi)), xi,logity,'.')
|
|
|
|
# plt.show()
|
|
|
|
# plt.show()
|
|
|
|
# return
|
|
|
|
# return
|
|
|
|
|
|
|
|
|
|
|
|
logity[logity==-40]=np.nan
|
|
|
|
|
|
|
|
slogity = smoothn(logity, robust=True)
|
|
|
|
|
|
|
|
slogity2 = SavitzkyGolay(n=2, degree=2).smooth(logity)
|
|
|
|
|
|
|
|
sa1 = sqrt(evar(logity))
|
|
|
|
|
|
|
|
sa = (slogity-logity).std()
|
|
|
|
|
|
|
|
print('estd = %g %g' % (sa,sa1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plo3 = _logitinv(slogity-z0*sa)
|
|
|
|
|
|
|
|
pup3 = _logitinv(slogity+z0*sa)
|
|
|
|
|
|
|
|
syi = _logitinv(slogity)
|
|
|
|
|
|
|
|
syi2 = _logitinv(slogity2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ymin = np.log(yi[yi>0].min())-1
|
|
|
|
ymin = np.log(yi[yi>0].min())-1
|
|
|
|
# logyi = np.log(yi).clip(min=ymin)
|
|
|
|
logyi = np.log(yi).clip(min=ymin)
|
|
|
|
|
|
|
|
# plt.scatter(xi,logyi)
|
|
|
|
# plt.scatter(xi,logyi)
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
# return
|
|
|
|
# return
|
|
|
|
#print(logyi)
|
|
|
|
#print(logyi)
|
|
|
|
|
|
|
|
|
|
|
|
gkreg = KRegression(xi, logity, hs=hs*0.4, xmin=xmin-2*hopt,xmax=xmax+2*hopt)
|
|
|
|
gkreg = KRegression(xi, logity, hs=hs*fact, xmin=xmin-hopt,xmax=xmax+hopt)
|
|
|
|
fg = gkreg.eval_grid(xi,output='plotobj', title='Kernel regression', plotflag=1)
|
|
|
|
fg = gkreg.eval_grid(xi,output='plotobj', title='Kernel regression', plotflag=1)
|
|
|
|
sa = (fg.data-logity).std()
|
|
|
|
sa = (fg.data-logity).std()
|
|
|
|
sa2 = iqrange(fg.data-logity) / 1.349
|
|
|
|
sa2 = iqrange(fg.data-logity) / 1.349
|
|
|
|
print('sa=%g %g' % (sa, sa2))
|
|
|
|
#print('sa=%g %g' % (sa, sa2))
|
|
|
|
sa = min(sa,sa2)
|
|
|
|
sa = min(sa,sa2)
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure(1)
|
|
|
|
# plt.figure(1)
|
|
|
|
plt.plot(xi, slogity-logity,'r.')
|
|
|
|
# plt.plot(xi, slogity-logity,'r.')
|
|
|
|
#plt.plot(xi, logity-,'b.')
|
|
|
|
# #plt.plot(xi, logity-,'b.')
|
|
|
|
plt.plot(xi, fg.data-logity, 'b.')
|
|
|
|
# plt.plot(xi, fg.data-logity, 'b.')
|
|
|
|
# plt.show()
|
|
|
|
# plt.show()
|
|
|
|
# return
|
|
|
|
# return
|
|
|
|
|
|
|
|
|
|
|
@ -3568,13 +3571,15 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj', plotlog=False):
|
|
|
|
#ci = ckreg.eval_grid_fast(xi)*n*dx
|
|
|
|
#ci = ckreg.eval_grid_fast(xi)*n*dx
|
|
|
|
ciii = ckreg.eval_grid_fast(xiii)*dx*n*(1+symmetric)
|
|
|
|
ciii = ckreg.eval_grid_fast(xiii)*dx*n*(1+symmetric)
|
|
|
|
|
|
|
|
|
|
|
|
pi = _logitinv(fg.data)
|
|
|
|
pi = reverse(fg.data)
|
|
|
|
|
|
|
|
|
|
|
|
sa1 = np.sqrt(1./(ciii*pi*(1-pi)))
|
|
|
|
sa1 = np.sqrt(1./(ciii*pi*(1-pi)))
|
|
|
|
|
|
|
|
|
|
|
|
plo3 = _logitinv(fg.data-z0*sa)
|
|
|
|
plo3 = reverse(fg.data-z0*sa)
|
|
|
|
pup3 = _logitinv(fg.data+z0*sa)
|
|
|
|
pup3 = reverse(fg.data+z0*sa)
|
|
|
|
fg.data = pi
|
|
|
|
fg.data = pi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pi = f.data
|
|
|
|
|
|
|
|
|
|
|
|
#pi = f.data
|
|
|
|
#pi = f.data
|
|
|
|
|
|
|
|
|
|
|
@ -3584,36 +3589,56 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj', plotlog=False):
|
|
|
|
b = 2*(1+z0**2/(ciii+1e-16))
|
|
|
|
b = 2*(1+z0**2/(ciii+1e-16))
|
|
|
|
plo2 = ((a-sqrt(a**2-2*pi**2*b))/b).clip(min=0,max=1)
|
|
|
|
plo2 = ((a-sqrt(a**2-2*pi**2*b))/b).clip(min=0,max=1)
|
|
|
|
pup2 = ((a+sqrt(a**2-2*pi**2*b))/b).clip(min=0,max=1)
|
|
|
|
pup2 = ((a+sqrt(a**2-2*pi**2*b))/b).clip(min=0,max=1)
|
|
|
|
pup = (pi + z0*np.sqrt(pi*(1-pi)/ciii)).clip(min=0,max=1)
|
|
|
|
|
|
|
|
plo = (pi - z0*np.sqrt(pi*(1-pi)/ciii)).clip(min=0,max=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
den = 1+(z0**2./ciii);
|
|
|
|
# Jeffreys intervall a=b=0.5
|
|
|
|
xc=(pi+(z0**2)/(2*ciii))/den;
|
|
|
|
#st.beta.isf(alpha/2, x+a, n-x+b)
|
|
|
|
halfwidth=(z0*sqrt((pi*(1-pi)/ciii)+(z0**2/(4*(ciii**2)))))/den
|
|
|
|
ab = 0.05
|
|
|
|
plo = xc-halfwidth # wilson score
|
|
|
|
pi1 = pi #fun1(xiii)
|
|
|
|
pup = xc+halfwidth # wilson score
|
|
|
|
pup2 = np.where(pi==1, 1, st.beta.isf(alpha/2, ciii*pi1+ab, ciii*(1-pi1)+ab))
|
|
|
|
|
|
|
|
plo2 = np.where(pi==0, 0, st.beta.isf(1-alpha/2, ciii*pi1+ab, ciii*(1-pi1)+ab))
|
|
|
|
|
|
|
|
#pup = (pi + z0*np.sqrt(pi*(1-pi)/ciii)).clip(min=0,max=1)
|
|
|
|
|
|
|
|
#plo = (pi - z0*np.sqrt(pi*(1-pi)/ciii)).clip(min=0,max=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Wilson score
|
|
|
|
|
|
|
|
den = 1+(z0**2./ciii);
|
|
|
|
|
|
|
|
xc=(pi1+(z0**2)/(2*ciii))/den;
|
|
|
|
|
|
|
|
halfwidth=(z0*sqrt((pi1*(1-pi1)/ciii)+(z0**2/(4*(ciii**2)))))/den
|
|
|
|
|
|
|
|
plo = (xc-halfwidth).clip(min=0) # wilson score
|
|
|
|
|
|
|
|
pup = (xc+halfwidth).clip(max=1.0) # wilson score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logity[logity==-40] = np.nan
|
|
|
|
|
|
|
|
#saz = (logity-forward(stineman_interp(xi, xiii, plo)))/z0
|
|
|
|
|
|
|
|
# slogity = smoothn(logity, robust=False) #, weight=1./saz)
|
|
|
|
|
|
|
|
# slogity2 = SavitzkyGolay(n=2, degree=2).smooth(logity)
|
|
|
|
|
|
|
|
# sa1 = sqrt(evar(logity))
|
|
|
|
|
|
|
|
# sa = (slogity-logity).std()
|
|
|
|
|
|
|
|
# #print('estd = %g %g' % (sa,sa1))
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# plo3 = reverse(slogity-z0*sa)
|
|
|
|
|
|
|
|
# pup3 = reverse(slogity+z0*sa)
|
|
|
|
|
|
|
|
# syi = reverse(slogity)
|
|
|
|
|
|
|
|
# syi2 = reverse(slogity2)
|
|
|
|
#print(fg.data)
|
|
|
|
#print(fg.data)
|
|
|
|
#fg.data = np.exp(fg.data)
|
|
|
|
#fg.data = np.exp(fg.data)
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure(2)
|
|
|
|
#plt.figure(2)
|
|
|
|
fg.plot(label='KReg grid')
|
|
|
|
fg.plot(label='KReg grid')
|
|
|
|
f.plot(label='KRegression')
|
|
|
|
f.plot(label='KRegression')
|
|
|
|
labtxt = '%d CI' % (int(100*(1-alpha)))
|
|
|
|
labtxt = '%d CI' % (int(100*(1-alpha)))
|
|
|
|
plt.plot(xi, syi, 'k',xi, syi2,'k--', label='smoothn')
|
|
|
|
#plt.plot(xi, syi, 'k',xi, syi2,'k--', label='smoothn')
|
|
|
|
plt.fill_between(xiii, pup, plo, alpha=0.20,color='r', linestyle='--', label=labtxt)
|
|
|
|
plt.fill_between(xiii, pup, plo, alpha=0.20,color='r', linestyle='--', label=labtxt)
|
|
|
|
#plt.fill_between(xiii, pup2, plo2,alpha = 0.20, color='b', linestyle=':',label='%d CI2' % (int(100*(1-alpha))))
|
|
|
|
plt.fill_between(xiii, pup2, plo2,alpha = 0.20, color='b', linestyle=':',label='%d CI2' % (int(100*(1-alpha))))
|
|
|
|
#plt.plot(xiii, 0.5*np.cos(xiii)+.5, 'r', label='True model')
|
|
|
|
#plt.plot(xiii, 0.5*np.cos(xiii)+.5, 'r', label='True model')
|
|
|
|
plt.plot(xiii, fun1(xiii), 'r', label='True model')
|
|
|
|
plt.plot(xiii, fun1(xiii), 'r', label='True model')
|
|
|
|
plt.scatter(xi,yi, label='data')
|
|
|
|
plt.scatter(xi,yi, label='data')
|
|
|
|
print(np.nanmax(f.data))
|
|
|
|
print('maxp = %g' % (np.nanmax(f.data)))
|
|
|
|
print(kreg.tkde.tkde.hs)
|
|
|
|
print('hs = %g' %( kreg.tkde.tkde.hs))
|
|
|
|
plt.legend()
|
|
|
|
plt.legend()
|
|
|
|
h = plt.gca()
|
|
|
|
h = plt.gca()
|
|
|
|
if plotlog:
|
|
|
|
if plotlog:
|
|
|
|
plt.setp(h,yscale='log')
|
|
|
|
plt.setp(h,yscale='log')
|
|
|
|
plt.show()
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
def kde_gauss_demo(n=50):
|
|
|
|
def kde_gauss_demo(n=50):
|
|
|
|
'''
|
|
|
|
'''
|
|
|
@ -3679,6 +3704,10 @@ if __name__ == '__main__':
|
|
|
|
#kde_demo2()
|
|
|
|
#kde_demo2()
|
|
|
|
#kreg_demo1(fast=True)
|
|
|
|
#kreg_demo1(fast=True)
|
|
|
|
#kde_gauss_demo()
|
|
|
|
#kde_gauss_demo()
|
|
|
|
kreg_demo2(n=180,symmetric=True,fun='hste', plotlog=False)
|
|
|
|
#kreg_demo2(n=120,symmetric=True,fun='hste', plotlog=True)
|
|
|
|
|
|
|
|
for i, n in enumerate([10,100,1000,2000,4000]):
|
|
|
|
|
|
|
|
plt.figure(i)
|
|
|
|
|
|
|
|
kreg_demo2(n=n,symmetric=True,fun='hste', plotlog=False)
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
#test_smoothn_2d()
|
|
|
|
#test_smoothn_2d()
|
|
|
|
#test_smoothn_cardioid()
|
|
|
|
#test_smoothn_cardioid()
|