|
|
|
@ -722,7 +722,7 @@ class TimeSeries(WafoData):
|
|
|
|
|
'''
|
|
|
|
|
def __init__(self, *args, **kwds):
|
|
|
|
|
self.name_ = kwds.pop('name', 'WAFO TimeSeries Object')
|
|
|
|
|
self.sensortypes = kwds.pop('sensortypes',['n', ])
|
|
|
|
|
self.sensortypes = kwds.pop('sensortypes', ['n', ])
|
|
|
|
|
self.position = kwds.pop('position', [zeros(3), ])
|
|
|
|
|
|
|
|
|
|
super(TimeSeries, self).__init__(*args, **kwds)
|
|
|
|
@ -832,7 +832,7 @@ class TimeSeries(WafoData):
|
|
|
|
|
t = linspace(0, lag * dt, lag + 1)
|
|
|
|
|
#cumsum = np.cumsum
|
|
|
|
|
acf = _wafocov.CovData1D(R[lags], t)
|
|
|
|
|
acf.sigma = sqrt(r_[ 0, r0**2 , r0**2 + 2 * cumsum(R[1:] ** 2)] / Ncens)
|
|
|
|
|
acf.sigma = sqrt(r_[ 0, r0 ** 2 , r0 ** 2 + 2 * cumsum(R[1:] ** 2)] / Ncens)
|
|
|
|
|
acf.children = [WafoData(-2. * acf.sigma[lags], t), WafoData(2. * acf.sigma[lags], t)]
|
|
|
|
|
acf.plot_args_children = ['r:']
|
|
|
|
|
acf.norm = norm
|
|
|
|
@ -991,8 +991,8 @@ class TimeSeries(WafoData):
|
|
|
|
|
Be = None
|
|
|
|
|
|
|
|
|
|
if method == 'psd':
|
|
|
|
|
nfft = 2 ** nextpow2(L)
|
|
|
|
|
pad_to = rate*nfft # Interpolate the spectrum with rate
|
|
|
|
|
nfft = 2 ** nextpow2(L)
|
|
|
|
|
pad_to = rate * nfft # Interpolate the spectrum with rate
|
|
|
|
|
S, f = psd(yy, Fs=1. / dt, NFFT=nfft, detrend=detrend, window=window(nfft),
|
|
|
|
|
noverlap=noverlap, pad_to=pad_to, scale_by_freq=True)
|
|
|
|
|
fact = 2.0 * pi
|
|
|
|
@ -1004,8 +1004,8 @@ class TimeSeries(WafoData):
|
|
|
|
|
|
|
|
|
|
R.data[:L] = R.data[:L] * win[L - 1::]
|
|
|
|
|
R.data[L] = 0.0
|
|
|
|
|
R.data = R.data[:L+1]
|
|
|
|
|
R.args = R.args[:L+1]
|
|
|
|
|
R.data = R.data[:L + 1]
|
|
|
|
|
R.args = R.args[:L + 1]
|
|
|
|
|
#R.plot()
|
|
|
|
|
#R.show()
|
|
|
|
|
spec = R.tospecdata(rate=rate, nugget=nugget)
|
|
|
|
@ -1030,155 +1030,7 @@ class TimeSeries(WafoData):
|
|
|
|
|
# S.S = zeros(nf+1,m-1);
|
|
|
|
|
return spec
|
|
|
|
|
|
|
|
|
|
def wave_height_steepness(self, rate=1, method=1, g=None):
|
|
|
|
|
'''
|
|
|
|
|
Returns waveheights and steepnesses from data.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
rate : scalar integer
|
|
|
|
|
interpolation rate. Interpolates with spline if greater than one.
|
|
|
|
|
|
|
|
|
|
method : scalar integer
|
|
|
|
|
0 max(Vcf, Vcb) and corresponding wave height Hd or Hu in H
|
|
|
|
|
1 crest front (rise) speed (Vcf) in S and wave height Hd in H. (default)
|
|
|
|
|
-1 crest back (fall) speed (Vcb) in S and waveheight Hu in H.
|
|
|
|
|
2 crest front steepness in S and the wave height Hd in H.
|
|
|
|
|
-2 crest back steepness in S and the wave height Hu in H.
|
|
|
|
|
3 total wave steepness in S and the wave height Hd in H
|
|
|
|
|
for zero-downcrossing waves.
|
|
|
|
|
-3 total wave steepness in S and the wave height Hu in H.
|
|
|
|
|
for zero-upcrossing waves.
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
S, H = Steepness and the corresponding wave height according to method
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The parameters are calculated as follows:
|
|
|
|
|
Crest front speed (velocity) = Vcf = Ac/Tcf
|
|
|
|
|
Crest back speed (velocity) = Vcb = Ac/Tcb
|
|
|
|
|
Crest front steepness = 2*pi*Ac./Td/Tcf/g
|
|
|
|
|
Crest back steepness = 2*pi*Ac./Tu/Tcb/g
|
|
|
|
|
Total wave steepness (zero-downcrossing wave) = 2*pi*Hd./Td.^2/g
|
|
|
|
|
Total wave steepness (zero-upcrossing wave) = 2*pi*Hu./Tu.^2/g
|
|
|
|
|
|
|
|
|
|
The definition of g, Ac,At, Tcf, etc. are given in gravity and
|
|
|
|
|
wafo.definitions.
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
|
-------
|
|
|
|
|
>>> import wafo.data as wd
|
|
|
|
|
>>> import wafo.objects as wo
|
|
|
|
|
>>> x = wd.sea()
|
|
|
|
|
>>> ts = wo.mat2timeseries(x)
|
|
|
|
|
>>> for i in xrange(-3,4):
|
|
|
|
|
... S, H = ts.wave_height_steepness(method=i)
|
|
|
|
|
... print(S[:2],H[:2])
|
|
|
|
|
(array([ 0.01186982, 0.04852534]), array([ 0.69, 0.86]))
|
|
|
|
|
(array([ 0.02918363, 0.06385979]), array([ 0.69, 0.86]))
|
|
|
|
|
(array([ 0.27797411, 0.33585743]), array([ 0.69, 0.86]))
|
|
|
|
|
(array([ 0.60835634, 0.60930197]), array([ 0.42, 0.78]))
|
|
|
|
|
(array([ 0.60835634, 0.60930197]), array([ 0.42, 0.78]))
|
|
|
|
|
(array([ 0.10140867, 0.06141156]), array([ 0.42, 0.78]))
|
|
|
|
|
(array([ 0.01821413, 0.01236672]), array([ 0.42, 0.78]))
|
|
|
|
|
|
|
|
|
|
>>> import pylab as plt
|
|
|
|
|
>>> h = plt.plot(S,H,'.')
|
|
|
|
|
>>> h = plt.xlabel('S')
|
|
|
|
|
>>> h = plt.ylabel('Hd [m]')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
wafo.definitions
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
# Ac,At = crest and trough amplitude, respectively
|
|
|
|
|
# Tcf,
|
|
|
|
|
# Tcb = Crest front and crest (rear) back period, respectively
|
|
|
|
|
# z_ind = indices to the zero-crossings (d,u) of the defining
|
|
|
|
|
# trough to trough waves (tw). If M>1 then
|
|
|
|
|
# z_ind=[N1 z_ind1 N2 z_ind2 ...NM z_indM] where
|
|
|
|
|
# Ni = length(z_indi) and z_indi are the indices to
|
|
|
|
|
# the zero-crossings of xi, i=1,2...M.
|
|
|
|
|
#
|
|
|
|
|
# yn = interpolated signal
|
|
|
|
|
#
|
|
|
|
|
# xn = [ti x1 x2 ... xM], where
|
|
|
|
|
# ti = time and x1 x2 ... xM are M column vectors of
|
|
|
|
|
# sampled surface elevation.
|
|
|
|
|
#[S,H,z_ind2,AC1,AT1,TFRONT1,TREAR1]=deal([]); % Initialize to []
|
|
|
|
|
dT = self.sampling_period()
|
|
|
|
|
#[N M] = size(xx);
|
|
|
|
|
if g is None:
|
|
|
|
|
g = gravity() #% acceleration of gravity
|
|
|
|
|
|
|
|
|
|
if rate>1:
|
|
|
|
|
dT = dT/rate
|
|
|
|
|
t0, tn = self.args[0], self.args[-1]
|
|
|
|
|
n = len(self.args)
|
|
|
|
|
ti = linspace(t0, tn, int(rate*n))
|
|
|
|
|
xi = interp1d(self.args , self.data.ravel(), kind='cubic')(ti)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
ti, xi = self.args, self.data.ravel()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#for ix=2:M
|
|
|
|
|
tc_ind, z_ind = findtc(xi,v=0,kind='tw')
|
|
|
|
|
tc_a = xi[tc_ind]
|
|
|
|
|
tc_t = ti[tc_ind]
|
|
|
|
|
AC = tc_a[1::2] # crest amplitude
|
|
|
|
|
AT= -tc_a[0::2] # trough amplitude
|
|
|
|
|
|
|
|
|
|
if (0<= method and method <=2):
|
|
|
|
|
# time between zero-upcrossing and crest [s]
|
|
|
|
|
tu = ecross(ti, xi, z_ind[1:-1:2],v=0)
|
|
|
|
|
TFRONT = tc_t[1::2]-tu
|
|
|
|
|
TFRONT[(TFRONT==0)]=dT # avoiding division by zero
|
|
|
|
|
|
|
|
|
|
if (0 >= method and method>=-2):
|
|
|
|
|
# time between crest and zero-downcrossing [s]
|
|
|
|
|
td = ecross(ti,xi, z_ind[2::2],v=0)
|
|
|
|
|
TREAR = td-tc_t[1::2]
|
|
|
|
|
TREAR[(TREAR==0)]=dT; #% avoiding division by zero
|
|
|
|
|
|
|
|
|
|
if method==0:
|
|
|
|
|
# max(Vcf, Vcr) and the corresponding wave height Hd or Hu in H
|
|
|
|
|
HU = AC+AT[1:]
|
|
|
|
|
HD = AC+AT[:-1]
|
|
|
|
|
T = np.where(TFRONT<TREAR, TFRONT, TREAR)
|
|
|
|
|
S = AC/T
|
|
|
|
|
H = np.where(TFRONT<TREAR, HD, HU)
|
|
|
|
|
|
|
|
|
|
elif method==1: # extracting crest front velocity [m/s] and
|
|
|
|
|
# Zero-downcrossing wave height [m]
|
|
|
|
|
H = AC+AT[:-1] # Hd
|
|
|
|
|
S = AC/TFRONT
|
|
|
|
|
elif method== -1: # extracting crest rear velocity [m/s] and
|
|
|
|
|
# Zero-upcrossing wave height [m]
|
|
|
|
|
H = AC+AT[1:] #Hu
|
|
|
|
|
S = AC/TREAR
|
|
|
|
|
elif method== 2: #crest front steepness in S and the wave height Hd in H.
|
|
|
|
|
H = AC + AT[:-1] #Hd
|
|
|
|
|
T = diff(ecross(ti,xi, z_ind[::2],v=0))
|
|
|
|
|
S = 2*pi*AC/T/TFRONT/g
|
|
|
|
|
elif method== -2: # crest back steepness in S and the wave height Hu in H.
|
|
|
|
|
H = AC+AT[1:]
|
|
|
|
|
T = diff(ecross(ti,xi, z_ind[1::2],v=0))
|
|
|
|
|
S = 2*pi*AC/T/TREAR/g
|
|
|
|
|
elif method==3: # total steepness in S and the wave height Hd in H
|
|
|
|
|
# for zero-doewncrossing waves.
|
|
|
|
|
H = AC+AT[:-1]
|
|
|
|
|
T = diff(ecross(ti,xi , z_ind[::2],v=0))# Period zero-downcrossing waves
|
|
|
|
|
S = 2*pi*H/T**2/g
|
|
|
|
|
elif method== -3: # total steepness in S and the wave height Hu in H for
|
|
|
|
|
# zero-upcrossing waves.
|
|
|
|
|
H = AC+AT[1::]
|
|
|
|
|
T = diff(ecross(ti, xi, z_ind[1::2],v=0))# Period zero-upcrossing waves
|
|
|
|
|
S = 2*pi*H/T**2/g
|
|
|
|
|
|
|
|
|
|
return S, H
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _trdata_cdf(self, **options):
|
|
|
|
@ -1481,7 +1333,212 @@ class TimeSeries(WafoData):
|
|
|
|
|
mean = self.data.mean()
|
|
|
|
|
sigma = self.data.std()
|
|
|
|
|
return TurningPoints(self.data[ind], t, mean=mean, sigma=sigma)
|
|
|
|
|
def wave_parameters(self, rate=1):
|
|
|
|
|
'''
|
|
|
|
|
Returns several wave parameters from data.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
rate : scalar integer
|
|
|
|
|
interpolation rate. Interpolates with spline if greater than one.
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
parameters : dict
|
|
|
|
|
wave parameters such as
|
|
|
|
|
Ac, At : Crest and trough amplitude, respectively
|
|
|
|
|
Tcf, Tcb : Crest front and crest (rear) back period, respectively
|
|
|
|
|
Hu, Hd : zero-up-crossing and zero-downcrossing wave height, respectively.
|
|
|
|
|
Tu, Td : zero-up-crossing and zero-downcrossing wave period, respectively.
|
|
|
|
|
|
|
|
|
|
The definition of g, Ac,At, Tcf, etc. are given in gravity and
|
|
|
|
|
wafo.definitions.
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
|
-------
|
|
|
|
|
>>> import wafo.data as wd
|
|
|
|
|
>>> import wafo.objects as wo
|
|
|
|
|
>>> x = wd.sea()
|
|
|
|
|
>>> ts = wo.mat2timeseries(x)
|
|
|
|
|
>>> wp = ts.wave_parameters()
|
|
|
|
|
>>> for name in ['Ac', 'At', 'Hu', 'Hd', 'Tu', 'Td', 'Tcf', 'Tcb']:
|
|
|
|
|
... print('%s' % name, wp[name][:2])
|
|
|
|
|
('Ac', array([ 0.25950546, 0.34950546]))
|
|
|
|
|
('At', array([ 0.16049454, 0.43049454]))
|
|
|
|
|
('Hu', array([ 0.69, 0.86]))
|
|
|
|
|
('Hd', array([ 0.42, 0.78]))
|
|
|
|
|
('Tu', array([ 6.10295202, 3.36978685]))
|
|
|
|
|
('Td', array([ 3.84377468, 6.35707656]))
|
|
|
|
|
('Tcf', array([ 0.42656819, 0.57361617]))
|
|
|
|
|
('Tcb', array([ 0.93355982, 1.04063638]))
|
|
|
|
|
|
|
|
|
|
>>> import pylab as plt
|
|
|
|
|
>>> h = plt.plot(wp['Td'],wp['Hd'],'.')
|
|
|
|
|
>>> h = plt.xlabel('Td [s]')
|
|
|
|
|
>>> h = plt.ylabel('Hd [m]')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
wafo.definitions
|
|
|
|
|
'''
|
|
|
|
|
dT = self.sampling_period()
|
|
|
|
|
if rate > 1:
|
|
|
|
|
dT = dT / rate
|
|
|
|
|
t0, tn = self.args[0], self.args[-1]
|
|
|
|
|
n = len(self.args)
|
|
|
|
|
ti = linspace(t0, tn, int(rate * n))
|
|
|
|
|
xi = interp1d(self.args , self.data.ravel(), kind='cubic')(ti)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
ti, xi = self.args, self.data.ravel()
|
|
|
|
|
|
|
|
|
|
tc_ind, z_ind = findtc(xi, v=0, kind='tw')
|
|
|
|
|
tc_a = xi[tc_ind]
|
|
|
|
|
tc_t = ti[tc_ind]
|
|
|
|
|
Ac = tc_a[1::2] # crest amplitude
|
|
|
|
|
At = -tc_a[0::2] # trough amplitude
|
|
|
|
|
Hu = Ac + At[1:]
|
|
|
|
|
Hd = Ac + At[:-1]
|
|
|
|
|
tu = ecross(ti, xi, z_ind[1::2], v=0)
|
|
|
|
|
Tu = diff(tu)# Period zero-upcrossing waves
|
|
|
|
|
td = ecross(ti, xi , z_ind[::2], v=0)
|
|
|
|
|
Td = diff(td)# Period zero-downcrossing waves
|
|
|
|
|
Tcf = tc_t[1::2] - tu[:-1]
|
|
|
|
|
Tcf[(Tcf == 0)] = dT # avoiding division by zero
|
|
|
|
|
Tcb = td[1:] - tc_t[1::2]
|
|
|
|
|
Tcb[(Tcb == 0)] = dT; #% avoiding division by zero
|
|
|
|
|
return dict(Ac=Ac, At=At, Hu=Hu, Hd=Hd, Tu=Tu, Td=Td, Tcf=Tcf, Tcb=Tcb)
|
|
|
|
|
|
|
|
|
|
def wave_height_steepness(self, method=1, rate=1, g=None):
|
|
|
|
|
'''
|
|
|
|
|
Returns waveheights and steepnesses from data.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
rate : scalar integer
|
|
|
|
|
interpolation rate. Interpolates with spline if greater than one.
|
|
|
|
|
|
|
|
|
|
method : scalar integer
|
|
|
|
|
0 max(Vcf, Vcb) and corresponding wave height Hd or Hu in H
|
|
|
|
|
1 crest front (rise) speed (Vcf) in S and wave height Hd in H. (default)
|
|
|
|
|
-1 crest back (fall) speed (Vcb) in S and waveheight Hu in H.
|
|
|
|
|
2 crest front steepness in S and the wave height Hd in H.
|
|
|
|
|
-2 crest back steepness in S and the wave height Hu in H.
|
|
|
|
|
3 total wave steepness in S and the wave height Hd in H
|
|
|
|
|
for zero-downcrossing waves.
|
|
|
|
|
-3 total wave steepness in S and the wave height Hu in H.
|
|
|
|
|
for zero-upcrossing waves.
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
S, H = Steepness and the corresponding wave height according to method
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The parameters are calculated as follows:
|
|
|
|
|
Crest front speed (velocity) = Vcf = Ac/Tcf
|
|
|
|
|
Crest back speed (velocity) = Vcb = Ac/Tcb
|
|
|
|
|
Crest front steepness = 2*pi*Ac./Td/Tcf/g
|
|
|
|
|
Crest back steepness = 2*pi*Ac./Tu/Tcb/g
|
|
|
|
|
Total wave steepness (zero-downcrossing wave) = 2*pi*Hd./Td.^2/g
|
|
|
|
|
Total wave steepness (zero-upcrossing wave) = 2*pi*Hu./Tu.^2/g
|
|
|
|
|
|
|
|
|
|
The definition of g, Ac,At, Tcf, etc. are given in gravity and
|
|
|
|
|
wafo.definitions.
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
|
-------
|
|
|
|
|
>>> import wafo.data as wd
|
|
|
|
|
>>> import wafo.objects as wo
|
|
|
|
|
>>> x = wd.sea()
|
|
|
|
|
>>> ts = wo.mat2timeseries(x)
|
|
|
|
|
>>> for i in xrange(-3,4):
|
|
|
|
|
... S, H = ts.wave_height_steepness(method=i)
|
|
|
|
|
... print(S[:2],H[:2])
|
|
|
|
|
(array([ 0.01186982, 0.04852534]), array([ 0.69, 0.86]))
|
|
|
|
|
(array([ 0.02918363, 0.06385979]), array([ 0.69, 0.86]))
|
|
|
|
|
(array([ 0.27797411, 0.33585743]), array([ 0.69, 0.86]))
|
|
|
|
|
(array([ 0.60835634, 0.60930197]), array([ 0.42, 0.78]))
|
|
|
|
|
(array([ 0.60835634, 0.60930197]), array([ 0.42, 0.78]))
|
|
|
|
|
(array([ 0.10140867, 0.06141156]), array([ 0.42, 0.78]))
|
|
|
|
|
(array([ 0.01821413, 0.01236672]), array([ 0.42, 0.78]))
|
|
|
|
|
|
|
|
|
|
>>> import pylab as plt
|
|
|
|
|
>>> h = plt.plot(S,H,'.')
|
|
|
|
|
>>> h = plt.xlabel('S')
|
|
|
|
|
>>> h = plt.ylabel('Hd [m]')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
wafo.definitions
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
dT = self.sampling_period()
|
|
|
|
|
if g is None:
|
|
|
|
|
g = gravity() #% acceleration of gravity
|
|
|
|
|
|
|
|
|
|
if rate > 1:
|
|
|
|
|
dT = dT / rate
|
|
|
|
|
t0, tn = self.args[0], self.args[-1]
|
|
|
|
|
n = len(self.args)
|
|
|
|
|
ti = linspace(t0, tn, int(rate * n))
|
|
|
|
|
xi = interp1d(self.args , self.data.ravel(), kind='cubic')(ti)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
ti, xi = self.args, self.data.ravel()
|
|
|
|
|
|
|
|
|
|
tc_ind, z_ind = findtc(xi, v=0, kind='tw')
|
|
|
|
|
tc_a = xi[tc_ind]
|
|
|
|
|
tc_t = ti[tc_ind]
|
|
|
|
|
Ac = tc_a[1::2] # crest amplitude
|
|
|
|
|
At = -tc_a[0::2] # trough amplitude
|
|
|
|
|
|
|
|
|
|
if (0 <= method and method <= 2):
|
|
|
|
|
# time between zero-upcrossing and crest [s]
|
|
|
|
|
tu = ecross(ti, xi, z_ind[1:-1:2], v=0)
|
|
|
|
|
Tcf = tc_t[1::2] - tu
|
|
|
|
|
Tcf[(Tcf == 0)] = dT # avoiding division by zero
|
|
|
|
|
if (0 >= method and method >= -2):
|
|
|
|
|
# time between crest and zero-downcrossing [s]
|
|
|
|
|
td = ecross(ti, xi, z_ind[2::2], v=0)
|
|
|
|
|
Tcb = td - tc_t[1::2]
|
|
|
|
|
Tcb[(Tcb == 0)] = dT; #% avoiding division by zero
|
|
|
|
|
|
|
|
|
|
if method == 0:
|
|
|
|
|
# max(Vcf, Vcr) and the corresponding wave height Hd or Hu in H
|
|
|
|
|
Hu = Ac + At[1:]
|
|
|
|
|
Hd = Ac + At[:-1]
|
|
|
|
|
T = np.where(Tcf < Tcb, Tcf, Tcb)
|
|
|
|
|
S = Ac / T
|
|
|
|
|
H = np.where(Tcf < Tcb, Hd, Hu)
|
|
|
|
|
elif method == 1: # extracting crest front velocity [m/s] and
|
|
|
|
|
# Zero-downcrossing wave height [m]
|
|
|
|
|
H = Ac + At[:-1] # Hd
|
|
|
|
|
S = Ac / Tcf
|
|
|
|
|
elif method == -1: # extracting crest rear velocity [m/s] and
|
|
|
|
|
# Zero-upcrossing wave height [m]
|
|
|
|
|
H = Ac + At[1:] #Hu
|
|
|
|
|
S = Ac / Tcb
|
|
|
|
|
elif method == 2: #crest front steepness in S and the wave height Hd in H.
|
|
|
|
|
H = Ac + At[:-1] #Hd
|
|
|
|
|
Td = diff(ecross(ti, xi, z_ind[::2], v=0))
|
|
|
|
|
S = 2 * pi * Ac / Td / Tcf / g
|
|
|
|
|
elif method == -2: # crest back steepness in S and the wave height Hu in H.
|
|
|
|
|
H = Ac + At[1:]
|
|
|
|
|
Tu = diff(ecross(ti, xi, z_ind[1::2], v=0))
|
|
|
|
|
S = 2 * pi * Ac / Tu / Tcb / g
|
|
|
|
|
elif method == 3: # total steepness in S and the wave height Hd in H
|
|
|
|
|
# for zero-doewncrossing waves.
|
|
|
|
|
H = Ac + At[:-1]
|
|
|
|
|
Td = diff(ecross(ti, xi , z_ind[::2], v=0))# Period zero-downcrossing waves
|
|
|
|
|
S = 2 * pi * H / Td ** 2 / g
|
|
|
|
|
elif method == -3: # total steepness in S and the wave height Hu in H for
|
|
|
|
|
# zero-upcrossing waves.
|
|
|
|
|
H = Ac + At[1:]
|
|
|
|
|
Tu = diff(ecross(ti, xi, z_ind[1::2], v=0))# Period zero-upcrossing waves
|
|
|
|
|
S = 2 * pi * H / Tu ** 2 / g
|
|
|
|
|
|
|
|
|
|
return S, H
|
|
|
|
|
def wave_periods(self, vh=None, pdef='d2d', wdef=None, index=None, rate=1):
|
|
|
|
|
"""
|
|
|
|
|
Return sequence of wave periods/lengths from data.
|
|
|
|
@ -1540,10 +1597,11 @@ class TimeSeries(WafoData):
|
|
|
|
|
Example:
|
|
|
|
|
--------
|
|
|
|
|
Histogram of crest2crest waveperiods
|
|
|
|
|
>>> import wafo
|
|
|
|
|
>>> import wafo.data as wd
|
|
|
|
|
>>> import wafo.objects as wo
|
|
|
|
|
>>> import pylab as plb
|
|
|
|
|
>>> x = wafo.data.sea()
|
|
|
|
|
>>> ts = wafo.objects.mat2timeseries(x[0:400,:])
|
|
|
|
|
>>> x = wd.sea()
|
|
|
|
|
>>> ts = wo.mat2timeseries(x[0:400,:])
|
|
|
|
|
>>> T, ix = ts.wave_periods(vh=0.0,pdef='c2c')
|
|
|
|
|
>>> h = plb.hist(T)
|
|
|
|
|
|
|
|
|
|