|
|
|
@ -36,9 +36,9 @@ arr = asarray
|
|
|
|
|
all = alltrue # @ReservedAssignment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _burr_link(x, logSF, phat, ix):
|
|
|
|
|
def _burr_link(x, logsf, phat, ix):
|
|
|
|
|
c, d, loc, scale = phat
|
|
|
|
|
logp = log(-expm1(logSF))
|
|
|
|
|
logp = log(-expm1(logsf))
|
|
|
|
|
xn = (x - loc) / scale
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return -logp / log1p(xn**(-c))
|
|
|
|
@ -51,28 +51,28 @@ def _burr_link(x, logSF, phat, ix):
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _expon_link(x, logSF, phat, ix):
|
|
|
|
|
def _expon_link(x, logsf, phat, ix):
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return - (x - phat[0]) / logSF
|
|
|
|
|
return - (x - phat[0]) / logsf
|
|
|
|
|
if ix == 0:
|
|
|
|
|
return x + phat[1] * logSF
|
|
|
|
|
return x + phat[1] * logsf
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _weibull_min_link(x, logSF, phat, ix):
|
|
|
|
|
def _weibull_min_link(x, logsf, phat, ix):
|
|
|
|
|
c, loc, scale = phat
|
|
|
|
|
if ix == 0:
|
|
|
|
|
return log(-logSF) / log((x - loc) / scale)
|
|
|
|
|
return log(-logsf) / log((x - loc) / scale)
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return x - scale * (-logSF) ** (1. / c)
|
|
|
|
|
return x - scale * (-logsf) ** (1. / c)
|
|
|
|
|
if ix == 2:
|
|
|
|
|
return (x - loc) / (-logSF) ** (1. / c)
|
|
|
|
|
return (x - loc) / (-logsf) ** (1. / c)
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _exponweib_link(x, logSF, phat, ix):
|
|
|
|
|
def _exponweib_link(x, logsf, phat, ix):
|
|
|
|
|
a, c, loc, scale = phat
|
|
|
|
|
logP = -log(-expm1(logSF))
|
|
|
|
|
logP = -log(-expm1(logsf))
|
|
|
|
|
xn = (x - loc) / scale
|
|
|
|
|
if ix == 0:
|
|
|
|
|
return - logP / log(-expm1(-xn**c))
|
|
|
|
@ -85,7 +85,7 @@ def _exponweib_link(x, logSF, phat, ix):
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _genpareto_link(x, logSF, phat, ix):
|
|
|
|
|
def _genpareto_link(x, logsf, phat, ix):
|
|
|
|
|
# Reference
|
|
|
|
|
# Stuart Coles (2004)
|
|
|
|
|
# "An introduction to statistical modelling of extreme values".
|
|
|
|
@ -94,27 +94,27 @@ def _genpareto_link(x, logSF, phat, ix):
|
|
|
|
|
if ix == 2:
|
|
|
|
|
# Reorganizing w.r.t.scale, Eq. 4.13 and 4.14, pp 81 in
|
|
|
|
|
# Coles (2004) gives
|
|
|
|
|
# link = -(x-loc)*c/expm1(-c*logSF)
|
|
|
|
|
# link = -(x-loc)*c/expm1(-c*logsf)
|
|
|
|
|
if c != 0.0:
|
|
|
|
|
phati = (x - loc) * c / expm1(-c * logSF)
|
|
|
|
|
phati = (x - loc) * c / expm1(-c * logsf)
|
|
|
|
|
else:
|
|
|
|
|
phati = -(x - loc) / logSF
|
|
|
|
|
phati = -(x - loc) / logsf
|
|
|
|
|
elif ix == 1:
|
|
|
|
|
if c != 0:
|
|
|
|
|
phati = x + scale * expm1(c * logSF) / c
|
|
|
|
|
phati = x + scale * expm1(c * logsf) / c
|
|
|
|
|
else:
|
|
|
|
|
phati = x + scale * logSF
|
|
|
|
|
phati = x + scale * logsf
|
|
|
|
|
elif ix == 0:
|
|
|
|
|
raise NotImplementedError(
|
|
|
|
|
'link(x,logSF,phat,i) where i=0 is not implemented!')
|
|
|
|
|
'link(x,logsf,phat,i) where i=0 is not implemented!')
|
|
|
|
|
else:
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
return phati
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _genextreme_link(x, logSF, phat, ix):
|
|
|
|
|
def _genextreme_link(x, logsf, phat, ix):
|
|
|
|
|
c, loc, scale = phat
|
|
|
|
|
loglogP = log(-log(-expm1(logSF)))
|
|
|
|
|
loglogP = log(-log(-expm1(logsf)))
|
|
|
|
|
if ix == 2:
|
|
|
|
|
# link = -(x-loc)*c/expm1(c*log(-logP))
|
|
|
|
|
if c != 0.0:
|
|
|
|
@ -126,40 +126,40 @@ def _genextreme_link(x, logSF, phat, ix):
|
|
|
|
|
return x + scale * loglogP
|
|
|
|
|
if ix == 0:
|
|
|
|
|
raise NotImplementedError(
|
|
|
|
|
'link(x,logSF,phat,i) where i=0 is not implemented!')
|
|
|
|
|
'link(x,logsf,phat,i) where i=0 is not implemented!')
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _genexpon_link(x, logSF, phat, ix):
|
|
|
|
|
def _genexpon_link(x, logsf, phat, ix):
|
|
|
|
|
a, b, c, loc, scale = phat
|
|
|
|
|
xn = (x - loc) / scale
|
|
|
|
|
fact1 = (xn + expm1(-c * xn) / c)
|
|
|
|
|
if ix == 0:
|
|
|
|
|
return b * fact1 + logSF # a
|
|
|
|
|
return b * fact1 + logsf # a
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return (a - logSF) / fact1 # b
|
|
|
|
|
return (a - logsf) / fact1 # b
|
|
|
|
|
if ix in [2, 3, 4]:
|
|
|
|
|
raise NotImplementedError('Only implemented for index in [0,1]!')
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _rayleigh_link(x, logSF, phat, ix):
|
|
|
|
|
def _rayleigh_link(x, logsf, phat, ix):
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return x - phat[0] / sqrt(-2.0 * logSF)
|
|
|
|
|
return x - phat[0] / sqrt(-2.0 * logsf)
|
|
|
|
|
if ix == 0:
|
|
|
|
|
return x - phat[1] * sqrt(-2.0 * logSF)
|
|
|
|
|
return x - phat[1] * sqrt(-2.0 * logsf)
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _trunclayleigh_link(x, logSF, phat, ix):
|
|
|
|
|
def _trunclayleigh_link(x, logsf, phat, ix):
|
|
|
|
|
c, loc, scale = phat
|
|
|
|
|
if ix == 0:
|
|
|
|
|
xn = (x - loc) / scale
|
|
|
|
|
return - 2 * logSF / xn - xn / 2.0
|
|
|
|
|
return - 2 * logsf / xn - xn / 2.0
|
|
|
|
|
if ix == 2:
|
|
|
|
|
return x - loc / (sqrt(c * c - 2 * logSF) - c)
|
|
|
|
|
return x - loc / (sqrt(c * c - 2 * logsf) - c)
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return x - scale * (sqrt(c * c - 2 * logSF) - c)
|
|
|
|
|
return x - scale * (sqrt(c * c - 2 * logsf) - c)
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -240,9 +240,9 @@ class Profile(object):
|
|
|
|
|
>>> phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
|
|
|
|
|
|
|
|
|
|
# Better 90% CI for phat.par[i=0]
|
|
|
|
|
>>> Lp = Profile(phat, i=0)
|
|
|
|
|
>>> Lp.plot()
|
|
|
|
|
>>> phat_ci = Lp.get_bounds(alpha=0.1)
|
|
|
|
|
>>> profile_phat_i = Profile(phat, i=0)
|
|
|
|
|
>>> profile_phat_i.plot()
|
|
|
|
|
>>> phat_ci = profile_phat_i.get_bounds(alpha=0.1)
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
def __init__(self, fit_dist, i=None, pmin=None, pmax=None, n=100,
|
|
|
|
@ -558,16 +558,13 @@ def plot_all_profiles(phats, plot=None):
|
|
|
|
|
n = len(indices)
|
|
|
|
|
for j, k in enumerate(indices):
|
|
|
|
|
plt.subplot(n, 1, j+1)
|
|
|
|
|
Lp1 = Profile(phats, i=k)
|
|
|
|
|
profile_phat_k = Profile(phats, i=k)
|
|
|
|
|
m = 0
|
|
|
|
|
while hasattr(Lp1, 'best_par') and m < 7:
|
|
|
|
|
phats.fit(*Lp1.best_par)
|
|
|
|
|
# phats = FitDistribution(dist, data, args=Lp1.best_par,
|
|
|
|
|
# method=method, search=True)
|
|
|
|
|
Lp1 = Profile(phats, i=k)
|
|
|
|
|
|
|
|
|
|
while hasattr(profile_phat_k, 'best_par') and m < 7:
|
|
|
|
|
phats.fit(*profile_phat_k.best_par)
|
|
|
|
|
profile_phat_k = Profile(phats, i=k)
|
|
|
|
|
m += 1
|
|
|
|
|
Lp1.plot()
|
|
|
|
|
profile_phat_k.plot()
|
|
|
|
|
if j != 0:
|
|
|
|
|
plt.title('')
|
|
|
|
|
if j != n//2:
|
|
|
|
@ -600,9 +597,9 @@ class ProfileQuantile(Profile):
|
|
|
|
|
alpha : real scalar
|
|
|
|
|
confidence coefficent (default 0.05)
|
|
|
|
|
link : function connecting the x-quantile and the survival probability
|
|
|
|
|
(SF) with the fixed distribution parameter, i.e.:
|
|
|
|
|
self.par[i] = link(x, logSF, self.par, i), where
|
|
|
|
|
logSF = log(Prob(X>x;phat)).
|
|
|
|
|
(sf) with the fixed distribution parameter, i.e.:
|
|
|
|
|
self.par[i] = link(x, logsf, self.par, i), where
|
|
|
|
|
logsf = log(Prob(X>x;phat)).
|
|
|
|
|
(default is fetched from the LINKS dictionary)
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
@ -625,8 +622,8 @@ class ProfileQuantile(Profile):
|
|
|
|
|
Lmax : Maximum value of profile function
|
|
|
|
|
alpha_cross_level :
|
|
|
|
|
|
|
|
|
|
PROFILE is a utility function for making inferences either on a particular
|
|
|
|
|
component of the vector phat or the quantile, x, or the probability, SF.
|
|
|
|
|
ProfileQuantile is a utility function for making inferences on the
|
|
|
|
|
quantile, x.
|
|
|
|
|
This is usually more accurate than using the delta method assuming
|
|
|
|
|
asymptotic normality of the ML estimator or the MPS estimator.
|
|
|
|
|
|
|
|
|
@ -641,9 +638,9 @@ class ProfileQuantile(Profile):
|
|
|
|
|
>>> x = phat.isf(sf)
|
|
|
|
|
|
|
|
|
|
# 80% CI for x
|
|
|
|
|
>>> Lx = ProfileQuantile(phat, x)
|
|
|
|
|
>>> Lx.plot()
|
|
|
|
|
>>> x_ci = Lx.get_bounds(alpha=0.2)
|
|
|
|
|
>>> profile_x = ProfileQuantile(phat, x)
|
|
|
|
|
>>> profile_x.plot()
|
|
|
|
|
>>> x_ci = profile_x.get_bounds(alpha=0.2)
|
|
|
|
|
'''
|
|
|
|
|
def __init__(self, fit_dist, x, i=None, pmin=None, pmax=None, n=100,
|
|
|
|
|
alpha=0.05, link=None):
|
|
|
|
@ -709,9 +706,9 @@ class ProfileProbability(Profile):
|
|
|
|
|
alpha : real scalar
|
|
|
|
|
confidence coefficent (default 0.05)
|
|
|
|
|
link : function connecting the x-quantile and the survival probability
|
|
|
|
|
(SF) with the fixed distribution parameter, i.e.:
|
|
|
|
|
self.par[i] = link(x, logSF, self.par, i), where
|
|
|
|
|
logSF = log(Prob(X>x;phat)).
|
|
|
|
|
(sf) with the fixed distribution parameter, i.e.:
|
|
|
|
|
self.par[i] = link(x, logsf, self.par, i), where
|
|
|
|
|
logsf = log(Prob(X>x;phat)).
|
|
|
|
|
(default is fetched from the LINKS dictionary)
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
@ -734,7 +731,7 @@ class ProfileProbability(Profile):
|
|
|
|
|
Lmax : Maximum value of profile function
|
|
|
|
|
alpha_cross_level :
|
|
|
|
|
|
|
|
|
|
PROFILE is a utility function for making inferences the survival
|
|
|
|
|
ProfileProbability is a utility function for making inferences the survival
|
|
|
|
|
probability (sf).
|
|
|
|
|
This is usually more accurate than using the delta method assuming
|
|
|
|
|
asymptotic normality of the ML estimator or the MPS estimator.
|
|
|
|
@ -749,9 +746,9 @@ class ProfileProbability(Profile):
|
|
|
|
|
>>> sf = 1./990
|
|
|
|
|
|
|
|
|
|
# 80% CI for sf
|
|
|
|
|
>>> Lsf = ProfileProbability(phat, np.log(sf))
|
|
|
|
|
>>> Lsf.plot()
|
|
|
|
|
>>> sf_ci = Lsf.get_bounds(alpha=0.2)
|
|
|
|
|
>>> profile_logsf = ProfileProbability(phat, np.log(sf))
|
|
|
|
|
>>> profile_logsf.plot()
|
|
|
|
|
>>> logsf_ci = profile_logsf.get_bounds(alpha=0.2)
|
|
|
|
|
'''
|
|
|
|
|
def __init__(self, fit_dist, logsf, i=None, pmin=None, pmax=None, n=100,
|
|
|
|
|
alpha=0.05, link=None):
|
|
|
|
@ -776,8 +773,8 @@ class ProfileProbability(Profile):
|
|
|
|
|
def _myprbfun(self, phatnotfixed):
|
|
|
|
|
mphat = self._par.copy()
|
|
|
|
|
mphat[self.i_notfixed] = phatnotfixed
|
|
|
|
|
logSF = self.fit_dist.dist.logsf(self.x, *mphat)
|
|
|
|
|
return np.where(np.isfinite(logSF), logSF, np.nan)
|
|
|
|
|
logsf = self.fit_dist.dist.logsf(self.x, *mphat)
|
|
|
|
|
return np.where(np.isfinite(logsf), logsf, np.nan)
|
|
|
|
|
|
|
|
|
|
def _get_variance(self):
|
|
|
|
|
i_notfixed = self.i_notfixed
|
|
|
|
@ -872,23 +869,23 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
# phat.par_upper upper CI for parameters
|
|
|
|
|
# phat.par_lower lower CI for parameters
|
|
|
|
|
|
|
|
|
|
#Better CI for phat.par[0]
|
|
|
|
|
>>> Lp = phat.profile(i=0)
|
|
|
|
|
>>> Lp.plot()
|
|
|
|
|
>>> p_ci = Lp.get_bounds(alpha=0.1)
|
|
|
|
|
|
|
|
|
|
>>> SF = 1./990
|
|
|
|
|
>>> x = phat.isf(SF)
|
|
|
|
|
# Better 90% CI for phat.par[0]
|
|
|
|
|
>>> profile_phat_i = phat.profile(i=0)
|
|
|
|
|
>>> profile_phat_i.plot()
|
|
|
|
|
>>> p_ci = profile_phat_i.get_bounds(alpha=0.1)
|
|
|
|
|
|
|
|
|
|
# CI for x
|
|
|
|
|
>>> Lx = phat.profile_quantile(x=x)
|
|
|
|
|
>>> Lx.plot()
|
|
|
|
|
>>> x_ci = Lx.get_bounds(alpha=0.2)
|
|
|
|
|
>>> sf = 1./990
|
|
|
|
|
>>> x = phat.isf(sf)
|
|
|
|
|
|
|
|
|
|
# CI for logSF=log(SF)
|
|
|
|
|
>>> Lsf = phat.profile_probability(log(SF))
|
|
|
|
|
>>> Lsf.plot()
|
|
|
|
|
>>> sf_ci = Lsf.get_bounds(alpha=0.2)
|
|
|
|
|
# 80% CI for x
|
|
|
|
|
>>> profile_x = phat.profile_quantile(x=x)
|
|
|
|
|
>>> profile_x.plot()
|
|
|
|
|
>>> x_ci = profile_x.get_bounds(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
# 80% CI for logsf=log(sf)
|
|
|
|
|
>>> profile_logsf = phat.profile_probability(log(sf))
|
|
|
|
|
>>> profile_logsf.plot()
|
|
|
|
|
>>> sf_ci = profile_logsf.get_bounds(alpha=0.2)
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
def __init__(self, dist, data, args=(), method='ML', alpha=0.05,
|
|
|
|
@ -1021,9 +1018,9 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
else:
|
|
|
|
|
kwds[key] = val
|
|
|
|
|
args = list(args)
|
|
|
|
|
Nargs = len(args)
|
|
|
|
|
nargs = len(args)
|
|
|
|
|
fixedn = []
|
|
|
|
|
names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale']
|
|
|
|
|
names = ['f%d' % n for n in range(nargs - 2)] + ['floc', 'fscale']
|
|
|
|
|
x0 = []
|
|
|
|
|
for n, key in enumerate(names):
|
|
|
|
|
if key in kwds:
|
|
|
|
@ -1038,7 +1035,7 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
func = fitfun
|
|
|
|
|
restore = None
|
|
|
|
|
else:
|
|
|
|
|
if len(fixedn) == Nargs:
|
|
|
|
|
if len(fixedn) == nargs:
|
|
|
|
|
raise ValueError("All parameters fixed. " +
|
|
|
|
|
"There is nothing to optimize.")
|
|
|
|
|
|
|
|
|
@ -1047,7 +1044,7 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
# This allows the non-fixed values to vary, but
|
|
|
|
|
# we still call self.nnlf with all parameters.
|
|
|
|
|
i = 0
|
|
|
|
|
for n in range(Nargs):
|
|
|
|
|
for n in range(nargs):
|
|
|
|
|
if n not in fixedn:
|
|
|
|
|
args[n] = theta[i]
|
|
|
|
|
i += 1
|
|
|
|
@ -1189,7 +1186,8 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
return -np.sum(logD[finiteD], axis=0) + penalty
|
|
|
|
|
return -np.sum(logD, axis=0)
|
|
|
|
|
|
|
|
|
|
def _get_optimizer(self, kwds):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _get_optimizer(kwds):
|
|
|
|
|
optimizer = kwds.pop('optimizer', optimize.fmin)
|
|
|
|
|
# convert string to function in scipy.optimize
|
|
|
|
|
if not callable(optimizer) and isinstance(optimizer, string_types):
|
|
|
|
@ -1203,14 +1201,14 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
|
|
|
|
|
def _fit_start(self, data, args, kwds):
|
|
|
|
|
dist = self.dist
|
|
|
|
|
Narg = len(args)
|
|
|
|
|
if Narg > dist.numargs + 2:
|
|
|
|
|
narg = len(args)
|
|
|
|
|
if narg > dist.numargs + 2:
|
|
|
|
|
raise ValueError("Too many input arguments.")
|
|
|
|
|
if (Narg < dist.numargs + 2) or not ('loc' in kwds and
|
|
|
|
|
if (narg < dist.numargs + 2) or not ('loc' in kwds and
|
|
|
|
|
'scale' in kwds):
|
|
|
|
|
# get distribution specific starting locations
|
|
|
|
|
start = dist._fitstart(data)
|
|
|
|
|
args += start[Narg:]
|
|
|
|
|
args += start[narg:]
|
|
|
|
|
loc = kwds.pop('loc', args[-2])
|
|
|
|
|
scale = kwds.pop('scale', args[-1])
|
|
|
|
|
args = args[:-2] + (loc, scale)
|
|
|
|
@ -1315,9 +1313,9 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
>>> x = phat.isf(sf)
|
|
|
|
|
|
|
|
|
|
# 80% CI for x
|
|
|
|
|
>>> Lx = phat.profile_quantile(x)
|
|
|
|
|
>>> Lx.plot()
|
|
|
|
|
>>> x_ci = Lx.get_bounds(alpha=0.2)
|
|
|
|
|
>>> profile_x = phat.profile_quantile(x)
|
|
|
|
|
>>> profile_x.plot()
|
|
|
|
|
>>> x_ci = profile_x.get_bounds(alpha=0.2)
|
|
|
|
|
'''
|
|
|
|
|
return ProfileQuantile(self, x, **kwds)
|
|
|
|
|
|
|
|
|
@ -1335,9 +1333,9 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
>>> log_sf = np.log(1./990)
|
|
|
|
|
|
|
|
|
|
# 80% CI for log_sf
|
|
|
|
|
>>> Lsf = phat.profile_probability(log_sf)
|
|
|
|
|
>>> Lsf.plot()
|
|
|
|
|
>>> log_sf_ci = Lsf.get_bounds(alpha=0.2)
|
|
|
|
|
>>> profile_logsf = phat.profile_probability(log_sf)
|
|
|
|
|
>>> profile_logsf.plot()
|
|
|
|
|
>>> log_sf_ci = profile_logsf.get_bounds(alpha=0.2)
|
|
|
|
|
'''
|
|
|
|
|
return ProfileProbability(self, log_sf, **kwds)
|
|
|
|
|
|
|
|
|
@ -1392,10 +1390,10 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
Other distribution types will introduce deviations in the plot.
|
|
|
|
|
'''
|
|
|
|
|
n = len(self.data)
|
|
|
|
|
SF = (arange(n, 0, -1)) / n
|
|
|
|
|
sf = (arange(n, 0, -1)) / n
|
|
|
|
|
plt.semilogy(
|
|
|
|
|
self.data, SF, symb2, self.data, self.sf(self.data), symb1)
|
|
|
|
|
# plt.plot(self.data,SF,'b.',self.data,self.sf(self.data),'r-')
|
|
|
|
|
self.data, sf, symb2, self.data, self.sf(self.data), symb1)
|
|
|
|
|
# plt.plot(self.data,sf,'b.',self.data,self.sf(self.data),'r-')
|
|
|
|
|
plt.xlabel('x')
|
|
|
|
|
plt.ylabel('F(x) (%s)' % self.dist.name)
|
|
|
|
|
plt.title('Empirical SF plot')
|
|
|
|
@ -1575,9 +1573,9 @@ def test1():
|
|
|
|
|
x = phat.isf(sf)
|
|
|
|
|
|
|
|
|
|
# 80% CI for x
|
|
|
|
|
Lx = ProfileQuantile(phat, x)
|
|
|
|
|
Lx.plot()
|
|
|
|
|
# x_ci = Lx.get_bounds(alpha=0.2)
|
|
|
|
|
profile_x = ProfileQuantile(phat, x)
|
|
|
|
|
profile_x.plot()
|
|
|
|
|
# x_ci = profile_x.get_bounds(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
plt.figure(5)
|
|
|
|
|
|
|
|
|
@ -1585,9 +1583,9 @@ def test1():
|
|
|
|
|
x = phat.isf(sf)
|
|
|
|
|
|
|
|
|
|
# 80% CI for x
|
|
|
|
|
Lsf = ProfileProbability(phat, np.log(sf))
|
|
|
|
|
Lsf.plot()
|
|
|
|
|
# logsf_ci = Lsf.get_bounds(alpha=0.2)
|
|
|
|
|
profile_logsf = ProfileProbability(phat, np.log(sf))
|
|
|
|
|
profile_logsf.plot()
|
|
|
|
|
# logsf_ci = profile_logsf.get_bounds(alpha=0.2)
|
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|