|
|
@ -211,14 +211,23 @@ def nt2cmat(nt, kind=1):
|
|
|
|
if kind == 1:
|
|
|
|
if kind == 1:
|
|
|
|
I = np.r_[0:n - 1]
|
|
|
|
I = np.r_[0:n - 1]
|
|
|
|
J = np.r_[1:n]
|
|
|
|
J = np.r_[1:n]
|
|
|
|
c = nt[I+1][:, J-1] - nt[I][:, J-1] - nt[I+1][:, J] + nt[I][:, J]
|
|
|
|
c = nt[I + 1][:,
|
|
|
|
|
|
|
|
J - 1] - nt[I][:,
|
|
|
|
|
|
|
|
J - 1] - nt[I + 1][:,
|
|
|
|
|
|
|
|
J] + nt[I][:,
|
|
|
|
|
|
|
|
J]
|
|
|
|
c2 = np.vstack((c, np.zeros((n - 1))))
|
|
|
|
c2 = np.vstack((c, np.zeros((n - 1))))
|
|
|
|
cmat = np.hstack((np.zeros((n, 1)), c2))
|
|
|
|
cmat = np.hstack((np.zeros((n, 1)), c2))
|
|
|
|
elif kind == 11: # same as def=1 but using for-loop
|
|
|
|
elif kind == 11: # same as def=1 but using for-loop
|
|
|
|
cmat = np.zeros((n, n))
|
|
|
|
cmat = np.zeros((n, n))
|
|
|
|
j = np.r_[1:n]
|
|
|
|
j = np.r_[1:n]
|
|
|
|
for i in range(n - 1):
|
|
|
|
for i in range(n - 1):
|
|
|
|
cmat[i, j] = nt[i+1, j-1] - nt[i, j-1] - nt[i+1, j] + nt[i, j]
|
|
|
|
cmat[i,
|
|
|
|
|
|
|
|
j] = nt[i + 1,
|
|
|
|
|
|
|
|
j - 1] - nt[i,
|
|
|
|
|
|
|
|
j - 1] - nt[i + 1,
|
|
|
|
|
|
|
|
j] + nt[i,
|
|
|
|
|
|
|
|
j]
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
_raise_kind_error(kind)
|
|
|
|
_raise_kind_error(kind)
|
|
|
|
return cmat
|
|
|
|
return cmat
|
|
|
@ -604,7 +613,6 @@ def mc2rfc(f_xy, paramv=None, paramu=None):
|
|
|
|
if paramv is None:
|
|
|
|
if paramv is None:
|
|
|
|
paramv = (-1, 1, N)
|
|
|
|
paramv = (-1, 1, N)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if paramu is None:
|
|
|
|
if paramu is None:
|
|
|
|
paramu = paramv
|
|
|
|
paramu = paramv
|
|
|
|
|
|
|
|
|
|
|
@ -617,8 +625,10 @@ def mc2rfc(f_xy, paramv=None, paramu=None):
|
|
|
|
for i in range(N):
|
|
|
|
for i in range(N):
|
|
|
|
Spm = Sminus[i] + Splus[i] - dd[i]
|
|
|
|
Spm = Sminus[i] + Splus[i] - dd[i]
|
|
|
|
if Spm > 0:
|
|
|
|
if Spm > 0:
|
|
|
|
Max_rfc[i]=(Splus[i]-dd[i])*(Splus[i]-dd[i])/(1-dd[i]/Spm)/Spm
|
|
|
|
Max_rfc[i] = (Splus[i] - dd[i]) * \
|
|
|
|
Min_rfc[i]=(Sminus[i]-dd[i])*(Sminus[i]-dd[i])/(1-dd[i]/Spm)/Spm
|
|
|
|
(Splus[i] - dd[i]) / (1 - dd[i] / Spm) / Spm
|
|
|
|
|
|
|
|
Min_rfc[i] = (Sminus[i] - dd[i]) * \
|
|
|
|
|
|
|
|
(Sminus[i] - dd[i]) / (1 - dd[i] / Spm) / Spm
|
|
|
|
norm[i] = Spm
|
|
|
|
norm[i] = Spm
|
|
|
|
# end if
|
|
|
|
# end if
|
|
|
|
# end for
|
|
|
|
# end for
|
|
|
@ -671,7 +681,6 @@ def mc2rfc(f_xy, paramv=None, paramu=None):
|
|
|
|
AA = np.rot90(AA)
|
|
|
|
AA = np.rot90(AA)
|
|
|
|
AA = AA - 0.5 * np.diag(np.diag(AA))
|
|
|
|
AA = AA - 0.5 * np.diag(np.diag(AA))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for j in range(nA):
|
|
|
|
for j in range(nA):
|
|
|
|
if normA[j] != 0:
|
|
|
|
if normA[j] != 0:
|
|
|
|
AA[j, :] = AA[j, :] / normA[j]
|
|
|
|
AA[j, :] = AA[j, :] / normA[j]
|
|
|
@ -680,7 +689,8 @@ def mc2rfc(f_xy, paramv=None, paramu=None):
|
|
|
|
# end for
|
|
|
|
# end for
|
|
|
|
fx = 0.
|
|
|
|
fx = 0.
|
|
|
|
|
|
|
|
|
|
|
|
if np.max(np.abs(e)) > 1e-7 and np.max(np.abs(NN)) > 1e-7*MA_rfc[0]:
|
|
|
|
if np.max(
|
|
|
|
|
|
|
|
np.abs(e)) > 1e-7 and np.max(np.abs(NN)) > 1e-7 * MA_rfc[0]:
|
|
|
|
I = np.eye(np.shape(AA))
|
|
|
|
I = np.eye(np.shape(AA))
|
|
|
|
|
|
|
|
|
|
|
|
if nA == 1:
|
|
|
|
if nA == 1:
|
|
|
@ -695,7 +705,7 @@ def mc2rfc(f_xy, paramv=None, paramu=None):
|
|
|
|
# end
|
|
|
|
# end
|
|
|
|
# end
|
|
|
|
# end
|
|
|
|
m0 = np.maximum(0, Min_rfc[N] - sum(f_rfc[N - k + 1:N, 0]))
|
|
|
|
m0 = np.maximum(0, Min_rfc[N] - sum(f_rfc[N - k + 1:N, 0]))
|
|
|
|
M0 = np.maximum(0, Max_rfc[N-k]-sum(f_rfc[N-k, 1:k]));
|
|
|
|
M0 = np.maximum(0, Max_rfc[N - k] - sum(f_rfc[N - k, 1:k]))
|
|
|
|
f_rfc[N - k, 0] = min(m0, M0)
|
|
|
|
f_rfc[N - k, 0] = min(m0, M0)
|
|
|
|
# n_loops_left=N-k+1
|
|
|
|
# n_loops_left=N-k+1
|
|
|
|
# end for
|
|
|
|
# end for
|
|
|
@ -851,7 +861,7 @@ def cmatplot(cmat, ux=None, uy=None, method=1, clevels=None):
|
|
|
|
F = cmat
|
|
|
|
F = cmat
|
|
|
|
shape = np.shape(F)
|
|
|
|
shape = np.shape(F)
|
|
|
|
if ux is None:
|
|
|
|
if ux is None:
|
|
|
|
ux = np.arange(shape[1]); # Antalet kolumner
|
|
|
|
ux = np.arange(shape[1]) # Antalet kolumner
|
|
|
|
|
|
|
|
|
|
|
|
if uy is None:
|
|
|
|
if uy is None:
|
|
|
|
uy = np.arange(shape[0]) # Antalet rader
|
|
|
|
uy = np.arange(shape[0]) # Antalet rader
|
|
|
@ -861,17 +871,25 @@ def cmatplot(cmat, ux=None, uy=None, method=1, clevels=None):
|
|
|
|
if method in [5, 15]:
|
|
|
|
if method in [5, 15]:
|
|
|
|
clevels = Fmax * np.r_[0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0]
|
|
|
|
clevels = Fmax * np.r_[0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0]
|
|
|
|
else: # 4, 14
|
|
|
|
else: # 4, 14
|
|
|
|
clevels = Fmax*np.r_[0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8]
|
|
|
|
clevels = Fmax * np.r_[0.005,
|
|
|
|
|
|
|
|
0.01,
|
|
|
|
|
|
|
|
0.02,
|
|
|
|
|
|
|
|
0.05,
|
|
|
|
|
|
|
|
0.1,
|
|
|
|
|
|
|
|
0.2,
|
|
|
|
|
|
|
|
0.4,
|
|
|
|
|
|
|
|
0.6,
|
|
|
|
|
|
|
|
0.8]
|
|
|
|
|
|
|
|
|
|
|
|
# Make sure ux and uy are row vectors
|
|
|
|
# Make sure ux and uy are row vectors
|
|
|
|
ux = ux.ravel();
|
|
|
|
ux = ux.ravel()
|
|
|
|
uy = uy.ravel();
|
|
|
|
uy = uy.ravel()
|
|
|
|
|
|
|
|
|
|
|
|
n = len(F)
|
|
|
|
n = len(F)
|
|
|
|
|
|
|
|
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
if method == 1: # mesh
|
|
|
|
if method == 1: # mesh
|
|
|
|
F = np.flipud(F.T); # Vrid cykelmatrisen for att plotta rett
|
|
|
|
F = np.flipud(F.T) # Vrid cykelmatrisen for att plotta rett
|
|
|
|
plt.mesh(ux, np.fliplr(uy), F)
|
|
|
|
plt.mesh(ux, np.fliplr(uy), F)
|
|
|
|
plt.xlabel('min')
|
|
|
|
plt.xlabel('min')
|
|
|
|
plt.ylabel('Max')
|
|
|
|
plt.ylabel('Max')
|
|
|
@ -1087,6 +1105,7 @@ def cmatplot(cmat, ux=None, uy=None, method=1, clevels=None):
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# end % _cmatplot
|
|
|
|
# end % _cmatplot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def arfm2mctp(Frfc):
|
|
|
|
def arfm2mctp(Frfc):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
ARFM2MCTP Calculates the markov matrix given an asymmetric rainflow matrix.
|
|
|
|
ARFM2MCTP Calculates the markov matrix given an asymmetric rainflow matrix.
|
|
|
@ -1148,11 +1167,10 @@ def arfm2mctp(Frfc):
|
|
|
|
# The cond. prob. pS1, pS2, pS3, pH1, pH2, pH3 are calculated using
|
|
|
|
# The cond. prob. pS1, pS2, pS3, pH1, pH2, pH3 are calculated using
|
|
|
|
# the elementary cond. prob. C, E, R, D, E3, Ch, Eh, Rh, Dh, E3h.
|
|
|
|
# the elementary cond. prob. C, E, R, D, E3, Ch, Eh, Rh, Dh, E3h.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# T(1,:)=clock;
|
|
|
|
# T(1,:)=clock;
|
|
|
|
|
|
|
|
|
|
|
|
N = np.sum(Frfc)
|
|
|
|
N = np.sum(Frfc)
|
|
|
|
Frfc = Frfc/N;
|
|
|
|
Frfc = Frfc / N
|
|
|
|
|
|
|
|
|
|
|
|
n = len(Frfc) # Number of levels
|
|
|
|
n = len(Frfc) # Number of levels
|
|
|
|
|
|
|
|
|
|
|
|