|
|
@ -142,6 +142,9 @@ class _KDE(object):
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
|
|
|
|
output : string optional
|
|
|
|
|
|
|
|
'value' if value output
|
|
|
|
|
|
|
|
'data' if object output
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
@ -149,6 +152,11 @@ class _KDE(object):
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
if len(args) == 0:
|
|
|
|
|
|
|
|
args = []
|
|
|
|
|
|
|
|
for i in range(self.d):
|
|
|
|
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
|
|
|
|
self.args = args
|
|
|
|
return self._eval_grid_fun(self._eval_grid_fast, *args, **kwds)
|
|
|
|
return self._eval_grid_fun(self._eval_grid_fast, *args, **kwds)
|
|
|
|
|
|
|
|
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
@ -162,9 +170,9 @@ class _KDE(object):
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
output : string
|
|
|
|
output : string optional
|
|
|
|
'value' if value output
|
|
|
|
'value' if value output
|
|
|
|
'wafodata' if object output
|
|
|
|
'data' if object output
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
@ -172,15 +180,15 @@ class _KDE(object):
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
return self._eval_grid_fun(self._eval_grid, *args, **kwds)
|
|
|
|
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _eval_grid_fun(self, eval_grd, *args, **kwds):
|
|
|
|
|
|
|
|
if len(args) == 0:
|
|
|
|
if len(args) == 0:
|
|
|
|
args = []
|
|
|
|
args = []
|
|
|
|
for i in range(self.d):
|
|
|
|
for i in range(self.d):
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
self.args = args
|
|
|
|
self.args = args
|
|
|
|
|
|
|
|
return self._eval_grid_fun(self._eval_grid, *args, **kwds)
|
|
|
|
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _eval_grid_fun(self, eval_grd, *args, **kwds):
|
|
|
|
f = eval_grd(*args)
|
|
|
|
f = eval_grd(*args)
|
|
|
|
if kwds.get('output', 'value') == 'value':
|
|
|
|
if kwds.get('output', 'value') == 'value':
|
|
|
|
return f
|
|
|
|
return f
|
|
|
@ -189,6 +197,7 @@ class _KDE(object):
|
|
|
|
kwds2 = dict(title=titlestr)
|
|
|
|
kwds2 = dict(title=titlestr)
|
|
|
|
kwds2['plot_kwds'] = dict(plotflag=1)
|
|
|
|
kwds2['plot_kwds'] = dict(plotflag=1)
|
|
|
|
kwds2.update(**kwds)
|
|
|
|
kwds2.update(**kwds)
|
|
|
|
|
|
|
|
args = self.args
|
|
|
|
if self.d == 1:
|
|
|
|
if self.d == 1:
|
|
|
|
args = args[0]
|
|
|
|
args = args[0]
|
|
|
|
wdata = WafoData(f, args, **kwds2)
|
|
|
|
wdata = WafoData(f, args, **kwds2)
|
|
|
@ -390,24 +399,28 @@ class TKDE(_KDE):
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
arg_i = gauss2dat(linspace(dat2gauss(self.xmin[i]), dat2gauss(self.xmax[i]), self.inc))
|
|
|
|
arg_i = gauss2dat(linspace(dat2gauss(self.xmin[i]), dat2gauss(self.xmax[i]), self.inc))
|
|
|
|
|
|
|
|
output : string optional
|
|
|
|
|
|
|
|
'value' if value output
|
|
|
|
|
|
|
|
'data' if object output
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
-------
|
|
|
|
values : array-like
|
|
|
|
values : array-like
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
f = self._eval_grid_fast(*args)
|
|
|
|
return self._eval_grid_fun(self._eval_grid_fast, *args, **kwds)
|
|
|
|
if kwds.get('output', 'value') == 'value':
|
|
|
|
# f = self._eval_grid_fast(*args)
|
|
|
|
return f
|
|
|
|
# if kwds.get('output', 'value') == 'value':
|
|
|
|
else:
|
|
|
|
# return f
|
|
|
|
args = self.args
|
|
|
|
# else:
|
|
|
|
titlestr = 'Kernel density estimate (%s)' % self.kernel.name
|
|
|
|
# args = self.args
|
|
|
|
kwds2 = dict(title=titlestr)
|
|
|
|
# titlestr = 'Kernel density estimate (%s)' % self.kernel.name
|
|
|
|
kwds2.update(**kwds)
|
|
|
|
# kwds2 = dict(title=titlestr)
|
|
|
|
if self.d == 1:
|
|
|
|
# kwds2.update(**kwds)
|
|
|
|
args = args[0]
|
|
|
|
# if self.d == 1:
|
|
|
|
return WafoData(f, args, **kwds2)
|
|
|
|
# args = args[0]
|
|
|
|
|
|
|
|
# return WafoData(f, args, **kwds2)
|
|
|
|
|
|
|
|
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
|
if self.L2 is None:
|
|
|
|
if self.L2 is None:
|
|
|
@ -420,14 +433,18 @@ class TKDE(_KDE):
|
|
|
|
points = meshgrid(*self.args) if self.d > 1 else self.args
|
|
|
|
points = meshgrid(*self.args) if self.d > 1 else self.args
|
|
|
|
f = self._scale_pdf(tf, points)
|
|
|
|
f = self._scale_pdf(tf, points)
|
|
|
|
if len(args):
|
|
|
|
if len(args):
|
|
|
|
if self.d == 1:
|
|
|
|
ipoints = meshgrid(*args) if self.d>1 else args
|
|
|
|
pdf = interpolate.interp1d(points[0], f, bounds_error=False, fill_value=0.0)
|
|
|
|
#shape0 = points[0].shape
|
|
|
|
elif self.d == 2:
|
|
|
|
#shape0i = ipoints[0].shape
|
|
|
|
pdf = interpolate.interp2d(points[0], points[1], f, bounds_error=False, fill_value=0.0)
|
|
|
|
for i in range(self.d):
|
|
|
|
#ipoints = meshgrid(*args) if self.d>1 else args
|
|
|
|
points[i].shape = (-1,)
|
|
|
|
fi = pdf(*args)
|
|
|
|
#ipoints[i].shape = (-1,)
|
|
|
|
|
|
|
|
points = np.asarray(points).T
|
|
|
|
|
|
|
|
#ipoints = np.asarray(ipoints).T
|
|
|
|
|
|
|
|
fi = interpolate.griddata(points, f.ravel(), tuple(ipoints), method='linear',
|
|
|
|
|
|
|
|
fill_value=0.0)
|
|
|
|
|
|
|
|
#fi.shape = shape0i
|
|
|
|
self.args = args
|
|
|
|
self.args = args
|
|
|
|
#fi.shape = ipoints[0].shape
|
|
|
|
|
|
|
|
return fi*(fi>0)
|
|
|
|
return fi*(fi>0)
|
|
|
|
return f
|
|
|
|
return f
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
def _eval_grid(self, *args):
|
|
|
@ -1636,91 +1653,18 @@ def mkernel(X, kernel):
|
|
|
|
fun = _MKERNEL_DICT[kernel[:4]]
|
|
|
|
fun = _MKERNEL_DICT[kernel[:4]]
|
|
|
|
return fun(np.atleast_2d(X))
|
|
|
|
return fun(np.atleast_2d(X))
|
|
|
|
|
|
|
|
|
|
|
|
def accumsum(accmap, a, size=None, dtype=None):
|
|
|
|
def accumsum(accmap, a, size, dtype=None):
|
|
|
|
"""
|
|
|
|
|
|
|
|
A sum accumulation function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
accmap : ndarray
|
|
|
|
|
|
|
|
This is the "accumulation map". It maps input (i.e. indices into
|
|
|
|
|
|
|
|
`a`) to their destination in the output array. The first `a.ndim`
|
|
|
|
|
|
|
|
dimensions of `accmap` must be the same as `a.shape`. That is,
|
|
|
|
|
|
|
|
`accmap.shape[:a.ndim]` must equal `a.shape`. For example, if `a`
|
|
|
|
|
|
|
|
has shape (15,4), then `accmap.shape[:2]` must equal (15,4). In this
|
|
|
|
|
|
|
|
case `accmap[i,j]` gives the index into the output array where
|
|
|
|
|
|
|
|
element (i,j) of `a` is to be accumulated. If the output is, say,
|
|
|
|
|
|
|
|
a 2D, then `accmap` must have shape (15,4,2). The value in the
|
|
|
|
|
|
|
|
last dimension give indices into the output array. If the output is
|
|
|
|
|
|
|
|
1D, then the shape of `accmap` can be either (15,4) or (15,4,1)
|
|
|
|
|
|
|
|
a : ndarray
|
|
|
|
|
|
|
|
The input data to be accumulated.
|
|
|
|
|
|
|
|
size : ndarray or None
|
|
|
|
|
|
|
|
The size of the output array. If None, the size will be determined
|
|
|
|
|
|
|
|
from `accmap`.
|
|
|
|
|
|
|
|
dtype : numpy data type, or None
|
|
|
|
|
|
|
|
The data type of the output array. If None, the data type of
|
|
|
|
|
|
|
|
`a` is used.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
out : ndarray
|
|
|
|
|
|
|
|
The accumulated results.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The shape of `out` is `size` if `size` is given. Otherwise the
|
|
|
|
|
|
|
|
shape is determined by the (lexicographically) largest indices of
|
|
|
|
|
|
|
|
the output found in `accmap`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
|
|
|
--------
|
|
|
|
|
|
|
|
>>> from numpy import array, prod
|
|
|
|
|
|
|
|
>>> a = array([[1,2,3],[4,-1,6],[-1,8,9]])
|
|
|
|
|
|
|
|
>>> a
|
|
|
|
|
|
|
|
array([[ 1, 2, 3],
|
|
|
|
|
|
|
|
[ 4, -1, 6],
|
|
|
|
|
|
|
|
[-1, 8, 9]])
|
|
|
|
|
|
|
|
>>> # Sum the diagonals.
|
|
|
|
|
|
|
|
>>> accmap = array([[0,1,2],[2,0,1],[1,2,0]])
|
|
|
|
|
|
|
|
>>> s = accum(accmap, a)
|
|
|
|
|
|
|
|
>>> s
|
|
|
|
|
|
|
|
array([ 9, 7, 15])
|
|
|
|
|
|
|
|
>>> # A 2D output, from sub-arrays with shapes and positions like this:
|
|
|
|
|
|
|
|
>>> # [ (2,2) (2,1)]
|
|
|
|
|
|
|
|
>>> # [ (1,2) (1,1)]
|
|
|
|
|
|
|
|
>>> accmap = array([
|
|
|
|
|
|
|
|
... [[0,0],[0,0],[0,1]],
|
|
|
|
|
|
|
|
... [[0,0],[0,0],[0,1]],
|
|
|
|
|
|
|
|
... [[1,0],[1,0],[1,1]]])
|
|
|
|
|
|
|
|
>>> # Accumulate using a product.
|
|
|
|
|
|
|
|
>>> accum(accmap, a, func=prod, dtype=float)
|
|
|
|
|
|
|
|
array([[ -8., 18.],
|
|
|
|
|
|
|
|
[ -8., 9.]])
|
|
|
|
|
|
|
|
>>> # Same accmap, but create an array of lists of values.
|
|
|
|
|
|
|
|
>>> accum(accmap, a, func=lambda x: x, dtype='O')
|
|
|
|
|
|
|
|
array([[[1, 2, 4, -1], [3, 6]],
|
|
|
|
|
|
|
|
[[-1, 8], [9]]], dtype=object)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Check for bad arguments and handle the defaults.
|
|
|
|
|
|
|
|
if accmap.shape[:a.ndim] != a.shape:
|
|
|
|
|
|
|
|
raise ValueError("The initial dimensions of accmap must be the same as a.shape")
|
|
|
|
|
|
|
|
if dtype is None:
|
|
|
|
if dtype is None:
|
|
|
|
dtype = a.dtype
|
|
|
|
dtype = a.dtype
|
|
|
|
|
|
|
|
|
|
|
|
adims = tuple(range(a.ndim))
|
|
|
|
|
|
|
|
if size is None:
|
|
|
|
|
|
|
|
size = 1 + np.squeeze(np.apply_over_axes(np.max, accmap, axes=adims))
|
|
|
|
|
|
|
|
size = np.atleast_1d(size)
|
|
|
|
size = np.atleast_1d(size)
|
|
|
|
if len(size)>1:
|
|
|
|
if len(size)>1:
|
|
|
|
binx = accmap[:,0]
|
|
|
|
binx = accmap[:,0]
|
|
|
|
biny = accmap[:,1]
|
|
|
|
biny = accmap[:,1]
|
|
|
|
out = np.asarray(sparse.coo_matrix((a.ravel(), (binx, biny)),shape=size, dtype=dtype).todense()).reshape(size)
|
|
|
|
out = sparse.coo_matrix((a.ravel(), (binx, biny)),shape=size, dtype=dtype).tocsr()
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
binx = accmap.ravel()
|
|
|
|
binx = accmap.ravel()
|
|
|
|
zero = np.zeros(len(binx))
|
|
|
|
zero = np.zeros(len(binx))
|
|
|
|
out = np.asarray(sparse.coo_matrix((a.ravel(), (binx, zero)),shape=(size,1), dtype=dtype).todense()).reshape(size)
|
|
|
|
out = sparse.coo_matrix((a.ravel(), (binx, zero)),shape=(size,1), dtype=dtype).tocsr()
|
|
|
|
|
|
|
|
|
|
|
|
return out
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
def accumsum2(accmap, a, size):
|
|
|
|
def accumsum2(accmap, a, size):
|
|
|
@ -2335,8 +2279,8 @@ def gridcount(data, X, use_sparse=False):
|
|
|
|
abs = np.abs
|
|
|
|
abs = np.abs
|
|
|
|
if d == 1:
|
|
|
|
if d == 1:
|
|
|
|
x.shape = (-1,)
|
|
|
|
x.shape = (-1,)
|
|
|
|
c = (acfun(binx, (x[binx + 1] - dat), size=[inc, ]) +
|
|
|
|
c = np.asarray((acfun(binx, (x[binx + 1] - dat), size=(inc, )) +
|
|
|
|
acfun(binx+1, (dat - x[binx]), size=[inc, ])) / w
|
|
|
|
acfun(binx+1, (dat - x[binx]), size=(inc, ))) / w).ravel()
|
|
|
|
# elif d == 2:
|
|
|
|
# elif d == 2:
|
|
|
|
# b2 = binx[1]
|
|
|
|
# b2 = binx[1]
|
|
|
|
# b1 = binx[0]
|
|
|
|
# b1 = binx[0]
|
|
|
@ -2350,6 +2294,9 @@ def gridcount(data, X, use_sparse=False):
|
|
|
|
else: # % d>2
|
|
|
|
else: # % d>2
|
|
|
|
|
|
|
|
|
|
|
|
Nc = csiz.prod()
|
|
|
|
Nc = csiz.prod()
|
|
|
|
|
|
|
|
# if use_sparse:
|
|
|
|
|
|
|
|
# c = sparse.csr_matrix((Nc,1))
|
|
|
|
|
|
|
|
# else:
|
|
|
|
c = np.zeros((Nc,))
|
|
|
|
c = np.zeros((Nc,))
|
|
|
|
|
|
|
|
|
|
|
|
fact2 = np.asarray(np.reshape(inc * np.arange(d), (d, -1)), dtype=int)
|
|
|
|
fact2 = np.asarray(np.reshape(inc * np.arange(d), (d, -1)), dtype=int)
|
|
|
@ -2368,12 +2315,12 @@ def gridcount(data, X, use_sparse=False):
|
|
|
|
bt2 = bt0[two] + fact2
|
|
|
|
bt2 = bt0[two] + fact2
|
|
|
|
b2 = binx + bt2 # linear index to X
|
|
|
|
b2 = binx + bt2 # linear index to X
|
|
|
|
c += acfun(b1, abs(np.prod(X1[b2] - dat, axis=0)), size=(Nc,))
|
|
|
|
c += acfun(b1, abs(np.prod(X1[b2] - dat, axis=0)), size=(Nc,))
|
|
|
|
|
|
|
|
# if use_sparse:
|
|
|
|
c = np.reshape(c / w, csiz, order='F')
|
|
|
|
# c = c.toarray().ravel()
|
|
|
|
|
|
|
|
c = np.reshape(c/w , csiz, order='F')
|
|
|
|
|
|
|
|
|
|
|
|
T = range(d)
|
|
|
|
T = range(d)
|
|
|
|
T[1], T[0] = T[0], T[1]
|
|
|
|
T[1], T[0] = T[0], T[1]
|
|
|
|
#T[-2], T[-1] = T[-1], T[-2]
|
|
|
|
|
|
|
|
c = c.transpose(*T) # make sure c is stored in the same way as meshgrid
|
|
|
|
c = c.transpose(*T) # make sure c is stored in the same way as meshgrid
|
|
|
|
return c
|
|
|
|
return c
|
|
|
|
|
|
|
|
|
|
|
@ -2477,5 +2424,5 @@ def test_docstrings():
|
|
|
|
doctest.testmod()
|
|
|
|
doctest.testmod()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_docstrings()
|
|
|
|
#test_docstrings()
|
|
|
|
|
|
|
|
kde_demo3()
|