|
|
|
@ -5,7 +5,7 @@ import numpy as np
|
|
|
|
|
from numpy import (pi, inf, zeros, ones, where, nonzero,
|
|
|
|
|
flatnonzero, ceil, sqrt, exp, log, arctan2,
|
|
|
|
|
tanh, cosh, sinh, random, atleast_1d,
|
|
|
|
|
minimum, diff, isnan, any, r_, conj, mod,
|
|
|
|
|
minimum, diff, isnan, r_, conj, mod,
|
|
|
|
|
hstack, vstack, interp, ravel, finfo, linspace,
|
|
|
|
|
arange, array, nan, newaxis, sign)
|
|
|
|
|
from numpy.fft import fft
|
|
|
|
@ -56,7 +56,7 @@ def _set_seed(iseed):
|
|
|
|
|
if iseed is not None:
|
|
|
|
|
try:
|
|
|
|
|
random.set_state(iseed)
|
|
|
|
|
except:
|
|
|
|
|
except KeyError:
|
|
|
|
|
random.seed(iseed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -592,7 +592,8 @@ class SpecData1D(PlotData):
|
|
|
|
|
print('theoretical. Solution:')
|
|
|
|
|
raise ValueError('use larger dt or sparser grid for spectrum.')
|
|
|
|
|
|
|
|
|
|
def _check_cov_matrix(self, acfmat, nt, dt):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _check_cov_matrix(acfmat, nt, dt):
|
|
|
|
|
eps0 = 0.0001
|
|
|
|
|
if nt + 1 >= 5:
|
|
|
|
|
cc2 = acfmat[0, 0] - acfmat[4, 0] * (acfmat[4, 0] / acfmat[0, 0])
|
|
|
|
@ -751,7 +752,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
Correct it with resample, for example.'''
|
|
|
|
|
raise ValueError(txt)
|
|
|
|
|
d_w = abs(diff(freq, n=2, axis=0))
|
|
|
|
|
if any(d_w > 1.0e-8):
|
|
|
|
|
if np.any(d_w > 1.0e-8):
|
|
|
|
|
txt = '''Not equidistant frequencies/wave numbers in spectrum.
|
|
|
|
|
Correct it with resample, for example.'''
|
|
|
|
|
raise ValueError(txt)
|
|
|
|
@ -995,18 +996,18 @@ class SpecData1D(PlotData):
|
|
|
|
|
Hw12 = Hw1 - Hw2
|
|
|
|
|
maxHw12 = max(abs(Hw12))
|
|
|
|
|
if trace == 1:
|
|
|
|
|
plotbackend.figure(1),
|
|
|
|
|
plotbackend.figure(1)
|
|
|
|
|
plotbackend.semilogy(freq, Hw1, 'r')
|
|
|
|
|
plotbackend.title('Hw')
|
|
|
|
|
plotbackend.figure(2),
|
|
|
|
|
plotbackend.figure(2)
|
|
|
|
|
plotbackend.semilogy(freq, abs(Hw12), 'r')
|
|
|
|
|
plotbackend.title('Hw-HwOld')
|
|
|
|
|
|
|
|
|
|
# pause(3)
|
|
|
|
|
plotbackend.figure(1),
|
|
|
|
|
plotbackend.figure(1)
|
|
|
|
|
plotbackend.semilogy(freq, Hw1, 'b')
|
|
|
|
|
plotbackend.title('Hw')
|
|
|
|
|
plotbackend.figure(2),
|
|
|
|
|
plotbackend.figure(2)
|
|
|
|
|
plotbackend.semilogy(freq, abs(Hw12), 'b')
|
|
|
|
|
plotbackend.title('Hw-HwOld')
|
|
|
|
|
# figtile
|
|
|
|
@ -1079,7 +1080,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
|
|
|
|
|
S = self.copy()
|
|
|
|
|
S.normalize()
|
|
|
|
|
m, unused_mtxt = self.moment(nr=4, even=True)
|
|
|
|
|
m = self.moment(nr=4, even=True)[0]
|
|
|
|
|
A = sqrt(m[0] / m[1])
|
|
|
|
|
|
|
|
|
|
if paramt is None:
|
|
|
|
@ -1103,7 +1104,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
if verbose:
|
|
|
|
|
print('The level u for Gaussian process = %g' % u)
|
|
|
|
|
|
|
|
|
|
unused_t0, tn, Nt = paramt
|
|
|
|
|
tn, Nt = paramt[1:]
|
|
|
|
|
t = linspace(0, tn / A, Nt) # normalized times
|
|
|
|
|
|
|
|
|
|
# Transform amplitudes to Gaussian levels:
|
|
|
|
@ -1210,7 +1211,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
|
|
|
|
|
S = self.copy()
|
|
|
|
|
S.normalize()
|
|
|
|
|
m, unused_mtxt = self.moment(nr=2, even=True)
|
|
|
|
|
m = self.moment(nr=2, even=True)[0]
|
|
|
|
|
A = sqrt(m[0] / m[1])
|
|
|
|
|
|
|
|
|
|
if self.tr is None:
|
|
|
|
@ -1303,7 +1304,8 @@ class SpecData1D(PlotData):
|
|
|
|
|
pdf.options = opts
|
|
|
|
|
return pdf
|
|
|
|
|
|
|
|
|
|
def _covinput_t_pdf(self, pt, R):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _covinput_t_pdf(pt, R):
|
|
|
|
|
"""
|
|
|
|
|
Return covariance matrix for Tc or Tt period problems
|
|
|
|
|
|
|
|
|
@ -1764,7 +1766,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
(indI(3)=Nt+1); for i\in (indI(3)+1,indI(4)], Y(i)>0 (deriv. X''(tn))
|
|
|
|
|
(indI(4)=Nt+2); for i\in (indI(4)+1,indI(5)], Y(i)<0 (deriv. X'(ts))
|
|
|
|
|
'''
|
|
|
|
|
R0, _R1, R2, _R3, R4 = R[:, :5].T
|
|
|
|
|
R0, R2, R4 = R[:, :5:2].T
|
|
|
|
|
covinput = self._covinput_mmt_pdf
|
|
|
|
|
Ntime = len(R0)
|
|
|
|
|
Nx0 = max(1, len(hg))
|
|
|
|
@ -2121,7 +2123,8 @@ class SpecData1D(PlotData):
|
|
|
|
|
# end
|
|
|
|
|
return pdf, err, terr, options
|
|
|
|
|
|
|
|
|
|
def _covinput_mmt_pdf(self, BIG, R, tn, ts, tnold=-1):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _covinput_mmt_pdf(BIG, R, tn, ts, tnold=-1):
|
|
|
|
|
"""
|
|
|
|
|
COVINPUT Sets up the covariance matrix
|
|
|
|
|
|
|
|
|
@ -2340,7 +2343,8 @@ class SpecData1D(PlotData):
|
|
|
|
|
|
|
|
|
|
return dens
|
|
|
|
|
|
|
|
|
|
def _cleanup(self, *files):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _cleanup(*files):
|
|
|
|
|
'''Removes files from harddisk if they exist'''
|
|
|
|
|
for f in files:
|
|
|
|
|
if os.path.exists(f):
|
|
|
|
@ -3095,7 +3099,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
xs = acf.sim(ns=ns, cases=Nstep)
|
|
|
|
|
for iy in range(1, xs.shape[-1]):
|
|
|
|
|
ts = TimeSeries(xs[:, iy], xs[:, 0].ravel())
|
|
|
|
|
g, _tmp = ts.trdata(method, **opt)
|
|
|
|
|
g = ts.trdata(method, **opt)[0]
|
|
|
|
|
test1.append(g.dist2gauss())
|
|
|
|
|
if verbose:
|
|
|
|
|
print('finished %d of %d ' % (ix + 1, rep))
|
|
|
|
@ -3304,7 +3308,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
wnNew = Cnf2dt / dt # % New Nyquist frequency
|
|
|
|
|
dWn = wnNew - wnOld
|
|
|
|
|
doInterpolate = dWn > 0 or w[1] > 0 or (
|
|
|
|
|
nfft != n) or dt != dTold or any(abs(diff(w, axis=0)) > 1.0e-8)
|
|
|
|
|
nfft != n) or dt != dTold or np.any(abs(diff(w, axis=0)) > 1.0e-8)
|
|
|
|
|
|
|
|
|
|
if doInterpolate > 0:
|
|
|
|
|
S1 = self.data
|
|
|
|
@ -3341,7 +3345,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
wnc = wnNew
|
|
|
|
|
# specfun = lambda xi : stineman_interp(xi, w, S1)
|
|
|
|
|
specfun = interpolate.interp1d(w, S1, kind='cubic')
|
|
|
|
|
x, unused_y = discretize(specfun, 0, wnc)
|
|
|
|
|
x = discretize(specfun, 0, wnc)[0]
|
|
|
|
|
dwMin = minimum(min(diff(x)), dwMin)
|
|
|
|
|
|
|
|
|
|
newNfft = 2 ** nextpow2(ceil(wnNew / dwMin)) + 1
|
|
|
|
@ -3396,7 +3400,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
>>> np.allclose(Sn.moment(2)[0], [1.0, 1.0])
|
|
|
|
|
True
|
|
|
|
|
'''
|
|
|
|
|
mom, unused_mtext = self.moment(nr=4, even=True)
|
|
|
|
|
mom = self.moment(nr=4, even=True)[0]
|
|
|
|
|
m0 = mom[0]
|
|
|
|
|
m2 = mom[1]
|
|
|
|
|
m4 = mom[2]
|
|
|
|
@ -3448,7 +3452,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
array([ 0.73062845, 0.34476034, 0.68277527, 2.90817052])
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
m, unused_mtxt = self.moment(nr=4, even=False)
|
|
|
|
|
m = self.moment(nr=4, even=False)[0]
|
|
|
|
|
if isinstance(factors, str):
|
|
|
|
|
factors = [factors]
|
|
|
|
|
fact_dict = dict(alpha=0, eps2=1, eps4=3, qp=3, Qp=3)
|
|
|
|
@ -3594,7 +3598,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
|
|
|
|
|
nfact = atleast_1d(nfact)
|
|
|
|
|
|
|
|
|
|
if any((nfact > 14) | (nfact < 0)):
|
|
|
|
|
if np.any((nfact > 14) | (nfact < 0)):
|
|
|
|
|
raise ValueError('Factor outside range (0,...,14)')
|
|
|
|
|
|
|
|
|
|
# vari = self.freqtype
|
|
|
|
@ -3656,7 +3660,7 @@ class SpecData1D(PlotData):
|
|
|
|
|
# if nargout>1,
|
|
|
|
|
# covariance between the moments:
|
|
|
|
|
# COV(mi,mj |T=t0) = int f^(i+j)*S(f)^2 df/T
|
|
|
|
|
mij, unused_mijtxt = self.moment(nr=8, even=False, j=1)
|
|
|
|
|
mij = self.moment(nr=8, even=False, j=1)[0]
|
|
|
|
|
for ix, tmp in enumerate(mij):
|
|
|
|
|
mij[ix] = tmp / T / ((2. * pi) ** (ix - 1.0))
|
|
|
|
|
|
|
|
|
|